Micro-scale hierarchical photoanode for quantum-dot-sensitized solar cells based on TiO2 nanowires

Heng LI, Wei JING, Dapeng YU, Qing ZHAO

PDF(1492 KB)
PDF(1492 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (1) : 53-59. DOI: 10.1007/s12200-016-0565-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Micro-scale hierarchical photoanode for quantum-dot-sensitized solar cells based on TiO2 nanowires

Author information +
History +

Abstract

This paper proposed a new architecture design for nanowire-based quantum-dot-sensitized solar cells to improve the photovoltaic performance. Microstructured rough substrate was used to increase the surface area of the photoanode without influence on charge carrier transport in the system. Compared to conventional devices, the short circuit current density and power conversion efficiency were enhanced by 50%. And the technology can be widely used in the photoelectrochemical (PEC) field, and it can be combined with other hierarchical nanostructures.

Keywords

quantum-dot-sensitized solar cell (QDSSC) / hierarchical structure / TiO2 nanowires

Cite this article

Download citation ▾
Heng LI, Wei JING, Dapeng YU, Qing ZHAO. Micro-scale hierarchical photoanode for quantum-dot-sensitized solar cells based on TiO2 nanowires. Front. Optoelectron., 2016, 9(1): 53‒59 https://doi.org/10.1007/s12200-016-0565-8

References

[1]
Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2003, 4(2): 145–153
CrossRef Google scholar
[2]
Rühle S, Shalom M, Zaban A. Quantum-dot-sensitized solar cells. ChemPhysChem, 2010, 11(11): 2290–2304
CrossRef Pubmed Google scholar
[3]
Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
CrossRef Pubmed Google scholar
[4]
Wu J, Chen G, Yang H, Ku C, Lai J. Effects of dye adsorption on the electron transport properties in ZnO nanowire dye-sensitized solar cells. Applied Physics Letters, 2007, 90(21): 213109
CrossRef Google scholar
[5]
Baxter J, Aydil E. Nanowire-based dye-sensitized solar cells. Applied Physics Letters, 2005, 86(5): 053114
CrossRef Google scholar
[6]
Bierman M J, Jin S. Potential applications of hierarchical branching nanowires in solar energy conversion. Energy & Environmental Science, 2009, 2(10): 1050–1059
CrossRef Google scholar
[7]
Xu C, Wu J, Desai U V, Gao D. High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays. Nano Letters, 2012, 12(5): 2420–2424
CrossRef Pubmed Google scholar
[8]
Wu X J, Zhu F, Mu C, Liang Y, Xu L, Chen Q, Chen R, Xu D. Electrochemical synthesis and applications of oriented and hierarchically quansi-1D semiconducting nanostructures. Coordination Chemistry Reviews, 2010, 254(9-10): 1135–1150
CrossRef Google scholar
[9]
Ko S H, Lee D, Kang H W, Nam K H, Yeo J Y, Hong S J, Grigoropoulos C P, Sung H J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Letters, 2011, 11(2): 666–671
CrossRef Pubmed Google scholar
[10]
Sauvage F, Di Fonzo F, Li Bassi A, Casari C S, Russo V, Divitini G, Ducati C, Bottani C E, Comte P, Graetzel M. Hierarchical TiO2 photoanode for dye-sensitized solar cells. Nano Letters, 2010, 10(7): 2562–2567
CrossRef Google scholar
[11]
Law M, Greene L E, Radenovic A, Kuykendall T, Liphardt J, Yang P. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. Journal of Physical Chemistry B, 2006, 110(45): 22652–22663
CrossRef Pubmed Google scholar
[12]
Lee Y, Chang C. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. Journal of Power Sources, 2008, 185(1): 584–588
CrossRef Google scholar
[13]
Yu X Y, Liao J Y, Qiu K Q, Kuang D B, Su C Y. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. ACS Nano, 2011, 5(12): 9494–9500
CrossRef Pubmed Google scholar
[14]
Zhao N, Osedach T P, Chang L Y, Geyer S M, Wanger D, Binda M T, Arango A C, Bawendi M G, Bulovic V. Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano, 2010, 4(7): 3743–3752
CrossRef Pubmed Google scholar
[15]
Zhang J, Gao J, Church C P, Miller E M, Luther J M, Klimov V I, Beard M C. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Letters, 2014, 14(10): 6010–6015
CrossRef Pubmed Google scholar
[16]
Zaban A, Micic O I, Gregg B A, Nozik A J. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir, 1998, 14(12): 3153–3156
CrossRef Google scholar
[17]
Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455–459
CrossRef Pubmed Google scholar
[18]
Liu B, Aydil E S.Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of American Chemical Society, 2009, 131(11): 3985–3990
CrossRef Google scholar

Acknowledgements

This work was supported by the National Key Basic Research Program of China (973 Program) (Nos. 2013CB932602 and 2011CB707601), the National Natural Science Foundation of China (Grant Nos. 51272007 and 11234001). Q.Z acknowledges Beijing Nova Program (No. XX2013003) and the Program for New Century Excellent Talents in University of China.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1492 KB)

Accesses

Citations

Detail

Sections
Recommended

/