Integrated liquid crystal photonic bandgap fiber devices
Kaiwei LI, Ting ZHANG, Nan ZHANG, Mengying ZHANG, Jing ZHANG, Tingting WU, Shaoyang MA, Junying WU, Ming CHEN, Yi HE, Lei WEI
Integrated liquid crystal photonic bandgap fiber devices
Liquid crystal photonic bandgap (LCPBG) fibers provide a versatile and robust platform for designing optical fiber devices, which are highly tunable and exhibit novel optical properties for manipulation of guided light. We review the research progress on design, fabrication and development of integrated LCPBG fiber devices.
photonic crystal fibers (PCFs) / fiber devices / liquid crystal (LC) devices
[1] |
Knight J C, Birks T A, Russell P S J, Atkin D M. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547–1549
CrossRef
Pubmed
Google scholar
|
[2] |
Bjarklev A, Broeng J, Bjarklev A S. Photonic Crystal Fibres. Boston, MA: Kluwer Academic Publishers, 2003
|
[3] |
Russell P S J. Photonic crystal fibers. science, 2003, 299(5605): 358–362
|
[4] |
Bise R T, Windeler R S, Kranz K S, Kerbage C, Eggleton B J, Trevor D J. Tunable photonic band gap fiber. In: Proceedings of Optical Fiber Communication Conference and Exhibit, 2002. Anaheim: IEEE, 2002, 466–468
|
[5] |
Larsen T, Bjarklev A, Hermann D, Broeng J. Optical devices based on liquid crystal photonic bandgap fibres. Optics Express, 2003, 11(20): 2589–2596
CrossRef
Pubmed
Google scholar
|
[6] |
Agrawal G P. Fiber-Optic Communication Systems. New York: John Wiley & Sons, 2012
|
[7] |
Green M, Madden S J. Low loss nematic liquid crystal cored fiber waveguides. Applied Optics, 1989, 28(24): 5202–5203
CrossRef
Pubmed
Google scholar
|
[8] |
Lorenz A, Schuhmann R, Kitzerow H S. Infiltrated photonic crystal fiber: experiments and liquid crystal scattering model. Optics Express, 2010, 18(4): 3519–3530
CrossRef
Pubmed
Google scholar
|
[9] |
Du F, Lu Y Q, Wu S T. Electrically tunable liquid-crystal photonic crystal fiber. Applied Physics Letters, 2004, 85(12): 2181–2183
CrossRef
Google scholar
|
[10] |
Haakestad M W, Alkeskjold T T, Nielsen M D, Scolari L, Riishede J, Engan H E, Bjarklev A. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photonics Technology Letters, 2005, 17(4): 819–821
CrossRef
Google scholar
|
[11] |
Scolari L, Alkeskjold T, Riishede J, Bjarklev A, Hermann D, Anawati A, Nielsen M, Bassi P. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Optics Express, 2005, 13(19): 7483–7496
CrossRef
Pubmed
Google scholar
|
[12] |
Wei L, Eskildsen L, Weirich J, Scolari L, Alkeskjold T T, Bjarklev A. Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers. Applied Optics, 2009, 48(3): 497–503
CrossRef
Pubmed
Google scholar
|
[13] |
Cognard J. Alignment of Nematic Liquid Crystals and Their Mixtures-Molecular Crystals and Liquid Crystals Supplement Series. London, New York: Gordon and Breach Science Publishers, 1982
|
[14] |
Anawati A. Alignment in cylindrical geometry and dielectric properties. Dissertation for the Master Degree. Sweden: Chalmers University of Tecnhology, 2005
|
[15] |
Lorenz A, Kitzerow H S, Schwuchow A, Kobelke J, Bartelt H. Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range. Optics Express, 2008, 16(23): 19375–19381
CrossRef
Pubmed
Google scholar
|
[16] |
Litchinitser N, Dunn S, Steinvurzel P, Eggleton B, White T, McPhedran R, de Sterke C. Application of an ARROW model for designing tunable photonic devices. Optics Express, 2004, 12(8): 1540–1550
CrossRef
Pubmed
Google scholar
|
[17] |
Lægsgaard J. Gap formation and guided modes in photonic bandgap fibres with high-index rods. Journal of Optics A, Pure and Applied Optics, 2004, 6(8): 798–804
CrossRef
Google scholar
|
[18] |
Ren G, Shum P, Hu J, Yu X, Gong Y. Polarization-dependent bandgap splitting and mode guiding in liquid crystal photonic bandgap fibers. Journal of Lightwave Technology, 2008, 26(22): 3650–3659
CrossRef
Google scholar
|
[19] |
Hu J J, Ren G, Shum P, Yu X, Wang G, Lu C. Analytical method for band structure calculation of photonic crystal fibers filled with liquid crystal. Optics Express, 2008, 16(9): 6668–6674
CrossRef
Pubmed
Google scholar
|
[20] |
Weirich J, Laegsgaard J, Wei L, Alkeskjold T T, Wu T X, Wu S T, Bjarklev A. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices. Optics Express, 2010, 18(5): 4074–4087
CrossRef
Pubmed
Google scholar
|
[21] |
Duguay M, Kokubun Y, Koch T L, Pfeiffer L. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Applied Physics Letters, 1986, 49(1): 13–15
CrossRef
Google scholar
|
[22] |
Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J. Antiresonant reflecting photonic crystal optical waveguides. Optics Letters, 2002, 27(18): 1592–1594
CrossRef
Pubmed
Google scholar
|
[23] |
Litchinitser N M, Dunn S C, Usner B, Eggleton B J, White T P, McPhedran R C, de Sterke C M. Resonances in microstructured optical waveguides. Optics Express, 2003, 11(10): 1243–1251
CrossRef
Pubmed
Google scholar
|
[24] |
Litchinitser N, Poliakov E. Antiresonant guiding microstructured optical fibers for sensing applications. Applied Physics. B, Lasers and Optics, 2005, 81(2–3): 347–351
CrossRef
Google scholar
|
[25] |
Alkeskjold T T. Optical devices based on liquid crystal photonic bandgap fibers. Dissertation for the Doctoral Degree. DKongens Lyngby: Technical University of Denmark, 2005
|
[26] |
Noordegraaf D, Scolari L, Laegsgaard J, Tanggaard Alkeskjold T, Tartarini G, Borelli E, Bassi P, Li J, Wu S T. Avoided-crossing-based liquid-crystal photonic-bandgap notch filter. Optics Letters, 2008, 33(9): 986–988
CrossRef
Pubmed
Google scholar
|
[27] |
Hu C, Whinnery J R. Losses of a nematic liquid-crystal optical waveguide. JOSA, 1974, 64(11): 1424–1432
CrossRef
Google scholar
|
[28] |
Ferrarini D, Vincetti L, Zoboli M, Cucinotta A, Selleri S. Leakage properties of photonic crystal fibers. Optics Express, 2002, 10(23): 1314–1319
CrossRef
Pubmed
Google scholar
|
[29] |
Alkeskjold T T, Bjarklev A. Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter. Optics Letters, 2007, 32(12): 1707–1709
CrossRef
Pubmed
Google scholar
|
[30] |
Wei L, Alkeskjold T T, Bjarklev A. Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber. IEEE Photonics Technology Letters, 2009, 21(21): 1633–1635
CrossRef
Google scholar
|
[31] |
Vengsarkar A M, Lemaire P J, Judkins J B, Bhatia V, Erdogan T, Sipe J E. Long-period fiber gratings as band-rejection filters. Journal of Lightwave Technology, 1996, 14(1): 58–65
CrossRef
Google scholar
|
[32] |
Vengsarkar A M, Pedrazzani J R, Judkins J B, Lemaire P J, Bergano N S, Davidson C R. Long-period fiber-grating-based gain equalizers. Optics Letters, 1996, 21(5): 336–338
CrossRef
Pubmed
Google scholar
|
[33] |
Poole C D, Wiesenfeld J M, Digiovanni D J, Vengsarkar A M. Optical fiber-based dispersion compensation using higher order modes near cutoff. Journal of Lightwave Technology, 1994, 12(10): 1746–1758
|
[34] |
Bhatia V, Vengsarkar A M. Optical fiber long-period grating sensors. Optics Letters, 1996, 21(9): 692–694
CrossRef
Pubmed
Google scholar
|
[35] |
Rindorf L, Jensen J B, Dufva M, Pedersen L H, Høiby P E, Bang O. Photonic crystal fiber long-period gratings for biochemical sensing. Optics Express, 2006, 14(18): 8224–8231
CrossRef
Pubmed
Google scholar
|
[36] |
Kakarantzas G, Birks T A, Russell P S J. Structural long-period gratings in photonic crystal fibers. Optics Letters, 2002, 27(12): 1013–1015
CrossRef
Pubmed
Google scholar
|
[37] |
Morishita K, Miyake Y. Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change. Journal of Lightwave Technology, 2004, 22(2): 625–630
CrossRef
Google scholar
|
[38] |
Lim J H, Lee K S, Kim J C, Lee B H. Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure. Optics Letters, 2004, 29(4): 331–333
CrossRef
Pubmed
Google scholar
|
[39] |
Brambilla G, Fotiadi A A, Slattery S A, Nikogosyan D N. Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber. Optics Letters, 2006, 31(18): 2675–2677
CrossRef
Pubmed
Google scholar
|
[40] |
Yeom D I, Steinvurzel P, Eggleton B J, Lim S D, Kim B Y. Tunable acoustic gratings in solid-core photonic bandgap fiber. Optics Express, 2007, 15(6): 3513–3518
CrossRef
Pubmed
Google scholar
|
[41] |
Noordegraaf D, Scolari L, Lægsgaard J, Rindorf L, Alkeskjold T T. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers. Optics Express, 2007, 15(13): 7901–7912
CrossRef
Pubmed
Google scholar
|
[42] |
de Gennes P G. The Physics of Liquid Crystals. New York: Oxford University Press, 1993
|
[43] |
Ulrich R. Polarization stabilization on single-mode fiber. Applied Physics Letters, 1979, 35(11): 840–842
CrossRef
Google scholar
|
[44] |
Imai T, Nosu K, Yamaguchi H. Optical polarisation control utilising an optical heterodyne detection scheme. Electronics Letters, 1985, 21(2): 52–53
CrossRef
Google scholar
|
[45] |
Heismann F. Integrated-optic polarization transformer for reset-free endless polarization control. IEEE Journal of Quantum Electronics, 1989, 25(8): 1898–1906
CrossRef
Google scholar
|
[46] |
Rumbaugh S H, Jones M D, Casperson L W. Polarization control for coherent fiber-optic systems using nematic liquid crystals. Journal of Lightwave Technology, 1990, 8(3): 459–465
|
[47] |
Kerbage C, Eggleton B. Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber. Optics Express, 2002, 10(5): 246–255
CrossRef
Pubmed
Google scholar
|
[48] |
Knape H, Margulis W. All-fiber polarization switch. Optics Letters, 2007, 32(6): 614–616
CrossRef
Pubmed
Google scholar
|
[49] |
Azzam R M. Poincaré sphere representation of the fixed-polarizer rotating-retarder optical system. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2000, 17(11): 2105–2107
CrossRef
Pubmed
Google scholar
|
[50] |
Chiba T, Ohtera Y, Kawakami S. Polarization stabilizer using liquid crystal rotatable waveplates. Journal of Lightwave Technology, 1999, 17(5): 885–890
CrossRef
Google scholar
|
[51] |
Starodubov D, Grubsky V, Feinberg J. All-fiber bandpass filter with adjustable transmission using cladding-mode coupling. IEEE Photonics Technology Letters, 1998, 10(11): 1590–1592
CrossRef
Google scholar
|
[52] |
Yeom D I, Kim H S, Kang M S, Park H S, Kim B Y. Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity. IEEE Photonics Technology Letters, 2005, 17(12): 2646–2648
CrossRef
Google scholar
|
[53] |
Steinvurzel P, Eggleton B, de Sterke C M, Steel M. Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibre. Electronics Letters, 2005, 41(8): 463–464
CrossRef
Google scholar
|
[54] |
Liu B W, Hu M L, Fang X H, Li Y F, Chai L, Li J Y, Chen W, Wang C Y. Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber. IEEE Photonics Technology Letters, 2008, 20(8): 581–583
CrossRef
Google scholar
|
[55] |
Seeds J, Williams K J. Microwave photonics. Journal of Lightwave Technology, 2006, 24(12): 4628–4641
|
[56] |
Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335
|
[57] |
Öhman F, Yvind K, Mørk J. Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics. IEEE Photonics Technology Letters, 2007, 19(15): 1145–1147
CrossRef
Google scholar
|
[58] |
Okawachi Y, Bigelow M S, Sharping J E, Zhu Z, Schweinsberg A, Gauthier D J, Boyd R W, Gaeta A L. Tunable all-optical delays via Brillouin slow light in an optical fiber. Physical Review Letters, 2005, 94(15): 153902
CrossRef
Pubmed
Google scholar
|
[59] |
Edge C, Molony A, Bennion I. Fibre grating time delay element for phased array antennas. Electronics Letters, 1995, 31(17): 1485–1486
CrossRef
Google scholar
|
[60] |
Italia V, Pisco M, Campopiano S, Cusano A, Cutolo A. Chirped fiber Bragg gratings for electrically tunable time delay lines. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(2): 408–416
|
[61] |
Baba T. Slow light in photonic crystals. Nature Photonics, 2008, 2(8): 465–473
CrossRef
Google scholar
|
[62] |
Vlasov Y A, O’Boyle M, Hamann H F, McNab S J. Active control of slow light on a chip with photonic crystal waveguides. Nature, 2005, 438(7064): 65–69
CrossRef
Pubmed
Google scholar
|
[63] |
Ebnali-Heidari M, Grillet C, Monat C, Eggleton B J. Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration. Optics Express, 2009, 17(3): 1628–1635
CrossRef
Pubmed
Google scholar
|
[64] |
Liu Z, Zheng X, Zhang H, Guo Y, Zhou B. X-band continuously variable true-time delay lines using air-guiding photonic bandgap fibers and a broadband light source. Optics Letters, 2006, 31(18): 2789–2791
CrossRef
Pubmed
Google scholar
|
[65] |
Pureur V, Bigot L, Bouwmans G, Quiquempois Y, Douay M, Jaouen Y. Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm. Applied Physics Letters, 2008, 92(6): 061113
CrossRef
Google scholar
|
[66] |
Shirakawa A, Maruyama H, Ueda K, Olausson C B, Lyngsø J K, Broeng J. High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm. Optics Express, 2009, 17(2): 447–454
CrossRef
Pubmed
Google scholar
|
[67] |
Noordegraaf D, Nielsen M D, Skovgaard P M, Agger S, Hansen K P, Broeng J, Jakobsen C, Simonsen H R, Laegsgaard J. Pump combiner for air-clad fiber with PM single-mode signal feed-through. In: Proceedings of Conference on Lasers and Electro-Optics/ International Quantum Electronics Conference, CLEO2009. Baltimore: Optical Society of America, 2009, 523–524
|
[68] |
Wei L, Khomtchenko E, Alkeskjold T T, Bjarklev A. Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fibre devices. Electronics Letters, 2009, 45(6): 326–327
CrossRef
Google scholar
|
[69] |
Wei L, Weirich J, Alkeskjold T T, Bjarklev A. On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers. Optics Letters, 2009, 34(24): 3818–3820
CrossRef
Pubmed
Google scholar
|
[70] |
Wei L, Alkeskjold T T, Bjarklev A. Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal. Applied Physics Letters, 2010, 96(24): 241104
CrossRef
Google scholar
|
[71] |
Wei L, Alkeskjold T T, Bjarklev A. Electrically tunable bandpass filter using solid-core photonic crystal fibers filled with multiple liquid crystals. Optics Letters, 2010, 35(10): 1608–1610
CrossRef
Pubmed
Google scholar
|
[72] |
Wei L, Xue W, Chen Y, Alkeskjold T T, Bjarklev A. Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device. Optics Letters, 2009, 34(18): 2757–2759
CrossRef
Pubmed
Google scholar
|
[73] |
Olausson C B, Scolari L, Wei L, Noordegraaf D, Weirich J, Alkeskjold T T, Hansen K P, Bjarklev A. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device. Optics Express, 2010, 18(8): 8229–8238
CrossRef
Pubmed
Google scholar
|
[74] |
Stolyarov A M, Wei L, Shapira O, Sorin F, Chua S L, Joannopoulos J D, Fink Y. Microfluidic directional emission control of an azimuthally polarized radial fibre laser. Nature Photonics, 2012, 6(4): 229–233
CrossRef
Google scholar
|
[75] |
Stolyarov A M, Wei L, Sorin F, Lestoquoy G, Joannopoulos J D, Fink Y. Fabrication and characterization of fibers with built-in liquid crystal channels and electrodes for transverse incident-light modulation. Applied Physics Letters, 2012, 101(1): 011108
CrossRef
Google scholar
|
/
〈 | 〉 |