Linear optical signal processing with optical filters: a tutorial
Xinliang ZHANG, Zhao WU
Linear optical signal processing with optical filters: a tutorial
An effective theoretical analysis method is presented to analyze different linear optical signal processing functions with optical filters reported in literatures. For different applications, the optical filters are supposed to operate on the analog or digital part of the signal separately, namely analog spectrum conversion and digital spectrum conversion. For instance, the return-to-zero (RZ) to non-return-to-zero (NRZ) format conversion for intensity or phase modulated signals are based on the analog spectrum conversion process, while the (N)RZ to (N)RZ phase-shift-keying (PSK) format conversion, logic NOT gate and clock recovery for RZ signals are based on the digital spectrum conversion process. Theoretical analyses with the help of numerical simulation are used to verify the reported experimental results, and all the experimental results can be effectively analyzed with this analytical model. The effect of the transmission spectrum of the filter on the performance of the converted signal is investigated. The most important factor is that the theoretical analysis provides an effective way to optimize the optical filter for different optical signal processing functions.
linear optical signal processing / format conversion / optical filter / clock recovery / logic gate
[1] |
Ta’eed V G, Fu L, Pelusi M, Rochette M, Littler I C, Moss D J, Eggleton B J. Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber. Optics Express, 2006, 14(22): 10371–10376
CrossRef
Pubmed
Google scholar
|
[2] |
Ta'eed V G, Shokooh-Saremi M, Fu L, Littler I C M, Moss D J, Rochette M, Eggleton B J, Yinlan Ruan B, Luther-DaviesB. Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(3): 360–370
CrossRef
Google scholar
|
[3] |
Bogoni A, Wu X, Nuccio S R, Willner A E. 640 Gb/s all-optical regenerator based on a periodically poled lithium niobate waveguide. Journal of Lightwave Technology, 2012, 30(12): 1829–1834
CrossRef
Google scholar
|
[4] |
Yu Y, Zhang X, Rosas-Fernández J B, Huang D, Penty R V, White I H. Single SOA based 16 DWDM channels all-optical NRZ-to-RZ format conversions with different duty cycles. Optics Express, 2008, 16(20): 16166–16171
CrossRef
Pubmed
Google scholar
|
[5] |
Chen X B, Yu Y, Zhang X L. All-optical logic minterms for three-input demodulated differential phase-shift keying signals at 40 Gb/s. IEEE Photonics Technology Letters, 2011, 23(2): 118–120
CrossRef
Google scholar
|
[6] |
Wang F, Yu Y, Zhang Y, Zhang X. All-optical clock recovery using a single Fabry-Perot semiconductor optical amplifier. Journal of Lightwave Technology, 2012, 30(11): 1632–1637
CrossRef
Google scholar
|
[7] |
Luo T, Yu C, Pan Z, Wang Y, McGeehan J E, Adler M, Willner A E. All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber. IEEE Photonics Technology Letters, 2006, 18(2): 430–432
CrossRef
Google scholar
|
[8] |
Li J, Olsson B E, Karlsson M, Andrekson P A. OTDM add-drop multiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber. Journal of Lightwave Technology, 2005, 23(9): 2654–2661
CrossRef
Google scholar
|
[9] |
Fok M P, Shu C. Multipump four-wave mixing in a photonic crystal fiber for 6 times 10 Gb/s wavelength multicasting of DPSK signals. IEEE Photonics Technology Letters, 2007, 19(15): 1166–1168
CrossRef
Google scholar
|
[10] |
Ye T, Yan C, Lu Y, Liu F, Su Y. All-optical regenerative NRZ-to-RZ format conversion using coupled ring-resonator optical waveguide. Optics Express, 2008, 16(20): 15325–15331
CrossRef
Pubmed
Google scholar
|
[11] |
Lyubomirsky I, Chien C C, Wang Y H. Optical DQPSK receiver with enhanced dispersion tolerance. IEEE Photonics Technology Letters, 2008, 20(7): 511–513
CrossRef
Google scholar
|
[12] |
Zhang L, Yang J Y, Li Y, Song M, Beausoleil R G, Willner A E. Monolithic modulator and demodulator of differential quadrature phase-shift keying signals based on silicon microrings. Optics Letters, 2008, 33(13): 1428–1430
CrossRef
Pubmed
Google scholar
|
[13] |
Maram R, Ming L, Azana J. High-speed all-optical NOT gate based on spectral phase-only linear optical filtering. In: Proceedings of IEEE Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013, 1–3
|
[14] |
Maram R, Kong D, Galili M, Oxenløwe L K, Azaña J. Ultrafast all-optical clock recovery based on phase-only linear optical filtering. Optics Letters, 2014, 39(9): 2815–2818
CrossRef
Pubmed
Google scholar
|
[15] |
Ashrafi R, Azaña J. Figure of merit for photonic differentiators. Optics Express, 2012, 20(3): 2626–2639
CrossRef
Pubmed
Google scholar
|
[16] |
Ferrera M, Park Y, Razzari L, Little B E, Chu S, Morandotti R, Moss JD J, Azaña. Ultra-fast integrated all-optical integrator. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010, 1–2
|
[17] |
Ferrera M, Park Y, Razzari L, Little B E, Chu S T, Morandotti R, Moss D J, Azaña J. All-optical 1st and 2nd order integration on a chip. Optics Express, 2011, 19(23): 23153–23161
CrossRef
Pubmed
Google scholar
|
[18] |
Ngo N Q, Song Y. On the interrelations between an optical differentiator and an optical Hilbert transformer. Optics Letters, 2011, 36(6): 915–917
CrossRef
Pubmed
Google scholar
|
[19] |
Asghari M H, Azaña J. All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis. Optics Letters, 2009, 34(3): 334–336
CrossRef
Pubmed
Google scholar
|
[20] |
Yu Y, Zhang X L, Huang D X. All-optical RZ-to-NRZ format conversion with a tunable fibre based delay interferometer. Chinese Physics Letters, 2007, 24(3): 706–709
CrossRef
Google scholar
|
[21] |
Yu Y, Zhang X L, Huang D X, Li L J, Fu W. 20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals. IEEE Photonics Technology Letters, 2007, 19(14): 1027–1029 doi:10.1109/LPT.2007.898762
|
[22] |
Yu Y, Zhang X, Huang D. All-optical format conversion from CS-RZ to NRZ at 40 Gbit/s. Optics Express, 2007, 15(9): 5693–5698
CrossRef
Pubmed
Google scholar
|
[23] |
Zhang Y, Xu E, Huang D, Zhang X. All-optical format conversion from RZ to NRZ utilizing microfiber resonator. IEEE Photonics Technology Letters, 2009, 21(17): 1202–1204
CrossRef
Google scholar
|
[24] |
Ding Y, Peucheret C, Pu M, Zsigri B, Seoane J, Liu L, Xu J, Ou H, Zhang X, Huang D. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator. Optics Express, 2010, 18(20): 21121–21130
CrossRef
Pubmed
Google scholar
|
[25] |
Ding Y, Xu J, Peucheret C, Pu M, Liu L, Seoane J, Ou H, Zhang X, Huang D. Multi-channel 40 Gbit/s NRZ-DPSK demodulation using a single silicon microring resonator. Journal of Lightwave Technology, 2011, 29(5): 677–684
CrossRef
Google scholar
|
[26] |
Ding Y, Hu H, Galili M, Xu J, Liu L, Pu M, Mulvad H C, Oxenløwe L K, Peucheret C, Jeppesen P, Zhang X, Huang D, Ou H. Generation of a 640 Gbit/s NRZ OTDM signal using a silicon microring resonator. Optics Express, 2011, 19(7): 6471–6477
CrossRef
Pubmed
Google scholar
|
[27] |
Zhang Z, Yu Y, Zhang X. Simultaneous all-optical demodulation and format conversion for multi-channel (CS)RZ-DPSK signals. Optics Express, 2011, 19(13): 12427–12433
CrossRef
Pubmed
Google scholar
|
[28] |
Xiong M, Ding Y, Zhang Q, Zhang X. All-optical clock recovery from 40 Gbit/s RZ signal based on microring resonators. Applied Optics, 2011, 50(28): 5390–5396
CrossRef
Pubmed
Google scholar
|
[29] |
Yu Y, Zhang X L, Huang D X. Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion. Optics Communications, 2011, 284(1): 129–135
CrossRef
Google scholar
|
[30] |
Xiong M, Ozolins O, Ding Y, Huang B, An Y, Ou H, Peucheret C, Zhang X. Simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator. Optics Express, 2012, 20(25): 27263–27272
CrossRef
Pubmed
Google scholar
|
[31] |
Wu W, Yu Y, Hu S, Zou B, Zhang X. All-optical format conversion for polarization and wavelength division multiplexed system. IEEE Photonics Technology Letters, 2012, 24(18): 1606–1609
CrossRef
Google scholar
|
[32] |
Zou B, Yu Y, Huang X, Wu Z, Wu W, Zhang X. All-optical format conversion for multichannel QPSK signals. Journal of Lightwave Technology, 2013, 31(3): 375–384
CrossRef
Google scholar
|
[33] |
Xiang L, Gao D, Zou B, Hu S, Zhang X. Simultaneous multi-channel RZ-OOK/DPSK to NRZ-OOK/DPSK format conversion based on integrated delay interferometers and arrayed-waveguide grating. Science China-Technological Sciences, 2013, 56(3): 558–562
CrossRef
Google scholar
|
[34] |
Qin Y, Yu Y, Zou J, Ye M, Xiang L, Zhang X. Silicon based polarization insensitive filter for WDM-PDM signal processing. Optics Express, 2013, 21(22): 25727–25733
CrossRef
Pubmed
Google scholar
|
[35] |
Xiang L, Yu Y, Qin Y, Zou J, Zou B, Zhang X. SOI based ultracompact polarization insensitive filter for PDM signal processing. Optics Letters, 2013, 38(14): 2379–2381
CrossRef
Pubmed
Google scholar
|
[36] |
Zou J, Yu Y, Yang W, Wu Z, Ye M, Chen G, Liu L, Deng S, Zhang X. An SOI based polarization insensitive filter for all-optical clock recovery. Optics Express, 2014, 22(6): 6647–6652
CrossRef
Pubmed
Google scholar
|
[37] |
Winzer P J, Essiambre R J. Advanced optical modulation formats. Proceedings of the IEEE, 2006, 94(5): 952–985
CrossRef
Google scholar
|
[38] |
Vaseghi S V. Advanced Signal Processing and Digital Noise Reduction. New York: Wiley, 1996
|
[39] |
Maram R, Kong D, Galili M, Oxenlowe L K, Azana J. 640 Gbit/s RZ-to-NRZ format conversion based on optical phase filtering. In: Proceedings of IEEE Photonics Conference (IPC), 2014, 316–317
|
[40] |
Ye T, Lu Y, Liu F, Zhang Q, Zhang Z, Qiu M, Su Y. 160-Gb/s NRZ-to-PSK conversion using linear filtering in silicon ring resonators. In: Proceedings of Lasers and Electro-Optics 2008 and 2008 Conference on Quantum Electronics and Laser Science (CLEO/QELS), 2008, JWA94
|
[41] |
Heebner J, Grover R, Ibrahim T. Optical Microresonators: Theory, Fabrication, and Applications. Berlin: Springer, 2007
|
/
〈 | 〉 |