Linear optical signal processing with optical filters: a tutorial

Xinliang ZHANG, Zhao WU

PDF(583 KB)
PDF(583 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (3) : 377-389. DOI: 10.1007/s12200-016-0554-y
TUTORIAL ARTICLE
TUTORIAL ARTICLE

Linear optical signal processing with optical filters: a tutorial

Author information +
History +

Abstract

An effective theoretical analysis method is presented to analyze different linear optical signal processing functions with optical filters reported in literatures. For different applications, the optical filters are supposed to operate on the analog or digital part of the signal separately, namely analog spectrum conversion and digital spectrum conversion. For instance, the return-to-zero (RZ) to non-return-to-zero (NRZ) format conversion for intensity or phase modulated signals are based on the analog spectrum conversion process, while the (N)RZ to (N)RZ phase-shift-keying (PSK) format conversion, logic NOT gate and clock recovery for RZ signals are based on the digital spectrum conversion process. Theoretical analyses with the help of numerical simulation are used to verify the reported experimental results, and all the experimental results can be effectively analyzed with this analytical model. The effect of the transmission spectrum of the filter on the performance of the converted signal is investigated. The most important factor is that the theoretical analysis provides an effective way to optimize the optical filter for different optical signal processing functions.

Keywords

linear optical signal processing / format conversion / optical filter / clock recovery / logic gate

Cite this article

Download citation ▾
Xinliang ZHANG, Zhao WU. Linear optical signal processing with optical filters: a tutorial. Front. Optoelectron., 2016, 9(3): 377‒389 https://doi.org/10.1007/s12200-016-0554-y

References

[1]
Ta’eed V G, Fu L, Pelusi M, Rochette M, Littler I C, Moss D J, Eggleton B J. Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber. Optics Express, 2006, 14(22): 10371–10376
CrossRef Pubmed Google scholar
[2]
Ta'eed V G, Shokooh-Saremi M, Fu L, Littler I C M, Moss D J, Rochette M, Eggleton B J, Yinlan Ruan B, Luther-DaviesB. Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(3): 360–370
CrossRef Google scholar
[3]
Bogoni A, Wu X, Nuccio S R, Willner A E. 640 Gb/s all-optical regenerator based on a periodically poled lithium niobate waveguide. Journal of Lightwave Technology, 2012, 30(12): 1829–1834
CrossRef Google scholar
[4]
Yu Y, Zhang X, Rosas-Fernández J B, Huang D, Penty R V, White I H. Single SOA based 16 DWDM channels all-optical NRZ-to-RZ format conversions with different duty cycles. Optics Express, 2008, 16(20): 16166–16171
CrossRef Pubmed Google scholar
[5]
Chen X B, Yu Y, Zhang X L. All-optical logic minterms for three-input demodulated differential phase-shift keying signals at 40 Gb/s. IEEE Photonics Technology Letters, 2011, 23(2): 118–120
CrossRef Google scholar
[6]
Wang F, Yu Y, Zhang Y, Zhang X. All-optical clock recovery using a single Fabry-Perot semiconductor optical amplifier. Journal of Lightwave Technology, 2012, 30(11): 1632–1637
CrossRef Google scholar
[7]
Luo T, Yu C, Pan Z, Wang Y, McGeehan J E, Adler M, Willner A E. All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber. IEEE Photonics Technology Letters, 2006, 18(2): 430–432
CrossRef Google scholar
[8]
Li J, Olsson B E, Karlsson M, Andrekson P A. OTDM add-drop multiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber. Journal of Lightwave Technology, 2005, 23(9): 2654–2661
CrossRef Google scholar
[9]
Fok M P, Shu C. Multipump four-wave mixing in a photonic crystal fiber for 6 times 10 Gb/s wavelength multicasting of DPSK signals. IEEE Photonics Technology Letters, 2007, 19(15): 1166–1168
CrossRef Google scholar
[10]
Ye T, Yan C, Lu Y, Liu F, Su Y. All-optical regenerative NRZ-to-RZ format conversion using coupled ring-resonator optical waveguide. Optics Express, 2008, 16(20): 15325–15331
CrossRef Pubmed Google scholar
[11]
Lyubomirsky I, Chien C C, Wang Y H. Optical DQPSK receiver with enhanced dispersion tolerance. IEEE Photonics Technology Letters, 2008, 20(7): 511–513
CrossRef Google scholar
[12]
Zhang L, Yang J Y, Li Y, Song M, Beausoleil R G, Willner A E. Monolithic modulator and demodulator of differential quadrature phase-shift keying signals based on silicon microrings. Optics Letters, 2008, 33(13): 1428–1430
CrossRef Pubmed Google scholar
[13]
Maram R, Ming L, Azana J. High-speed all-optical NOT gate based on spectral phase-only linear optical filtering. In: Proceedings of IEEE Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013, 1–3
[14]
Maram R, Kong D, Galili M, Oxenløwe L K, Azaña J. Ultrafast all-optical clock recovery based on phase-only linear optical filtering. Optics Letters, 2014, 39(9): 2815–2818
CrossRef Pubmed Google scholar
[15]
Ashrafi R, Azaña J. Figure of merit for photonic differentiators. Optics Express, 2012, 20(3): 2626–2639
CrossRef Pubmed Google scholar
[16]
Ferrera M, Park Y, Razzari L, Little B E, Chu S, Morandotti R, Moss JD J, Azaña. Ultra-fast integrated all-optical integrator. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010, 1–2
[17]
Ferrera M, Park Y, Razzari L, Little B E, Chu S T, Morandotti R, Moss D J, Azaña J. All-optical 1st and 2nd order integration on a chip. Optics Express, 2011, 19(23): 23153–23161
CrossRef Pubmed Google scholar
[18]
Ngo N Q, Song Y. On the interrelations between an optical differentiator and an optical Hilbert transformer. Optics Letters, 2011, 36(6): 915–917
CrossRef Pubmed Google scholar
[19]
Asghari M H, Azaña J. All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis. Optics Letters, 2009, 34(3): 334–336
CrossRef Pubmed Google scholar
[20]
Yu Y, Zhang X L, Huang D X. All-optical RZ-to-NRZ format conversion with a tunable fibre based delay interferometer. Chinese Physics Letters, 2007, 24(3): 706–709
CrossRef Google scholar
[21]
Yu Y, Zhang X L, Huang D X, Li L J, Fu W. 20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals. IEEE Photonics Technology Letters, 2007, 19(14): 1027–1029 doi:10.1109/LPT.2007.898762
[22]
Yu Y, Zhang X, Huang D. All-optical format conversion from CS-RZ to NRZ at 40 Gbit/s. Optics Express, 2007, 15(9): 5693–5698
CrossRef Pubmed Google scholar
[23]
Zhang Y, Xu E, Huang D, Zhang X. All-optical format conversion from RZ to NRZ utilizing microfiber resonator. IEEE Photonics Technology Letters, 2009, 21(17): 1202–1204
CrossRef Google scholar
[24]
Ding Y, Peucheret C, Pu M, Zsigri B, Seoane J, Liu L, Xu J, Ou H, Zhang X, Huang D. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator. Optics Express, 2010, 18(20): 21121–21130
CrossRef Pubmed Google scholar
[25]
Ding Y, Xu J, Peucheret C, Pu M, Liu L, Seoane J, Ou H, Zhang X, Huang D. Multi-channel 40 Gbit/s NRZ-DPSK demodulation using a single silicon microring resonator. Journal of Lightwave Technology, 2011, 29(5): 677–684
CrossRef Google scholar
[26]
Ding Y, Hu H, Galili M, Xu J, Liu L, Pu M, Mulvad H C, Oxenløwe L K, Peucheret C, Jeppesen P, Zhang X, Huang D, Ou H. Generation of a 640 Gbit/s NRZ OTDM signal using a silicon microring resonator. Optics Express, 2011, 19(7): 6471–6477
CrossRef Pubmed Google scholar
[27]
Zhang Z, Yu Y, Zhang X. Simultaneous all-optical demodulation and format conversion for multi-channel (CS)RZ-DPSK signals. Optics Express, 2011, 19(13): 12427–12433
CrossRef Pubmed Google scholar
[28]
Xiong M, Ding Y, Zhang Q, Zhang X. All-optical clock recovery from 40 Gbit/s RZ signal based on microring resonators. Applied Optics, 2011, 50(28): 5390–5396
CrossRef Pubmed Google scholar
[29]
Yu Y, Zhang X L, Huang D X. Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion. Optics Communications, 2011, 284(1): 129–135
CrossRef Google scholar
[30]
Xiong M, Ozolins O, Ding Y, Huang B, An Y, Ou H, Peucheret C, Zhang X. Simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator. Optics Express, 2012, 20(25): 27263–27272
CrossRef Pubmed Google scholar
[31]
Wu W, Yu Y, Hu S, Zou B, Zhang X. All-optical format conversion for polarization and wavelength division multiplexed system. IEEE Photonics Technology Letters, 2012, 24(18): 1606–1609
CrossRef Google scholar
[32]
Zou B, Yu Y, Huang X, Wu Z, Wu W, Zhang X. All-optical format conversion for multichannel QPSK signals. Journal of Lightwave Technology, 2013, 31(3): 375–384
CrossRef Google scholar
[33]
Xiang L, Gao D, Zou B, Hu S, Zhang X. Simultaneous multi-channel RZ-OOK/DPSK to NRZ-OOK/DPSK format conversion based on integrated delay interferometers and arrayed-waveguide grating. Science China-Technological Sciences, 2013, 56(3): 558–562
CrossRef Google scholar
[34]
Qin Y, Yu Y, Zou J, Ye M, Xiang L, Zhang X. Silicon based polarization insensitive filter for WDM-PDM signal processing. Optics Express, 2013, 21(22): 25727–25733
CrossRef Pubmed Google scholar
[35]
Xiang L, Yu Y, Qin Y, Zou J, Zou B, Zhang X. SOI based ultracompact polarization insensitive filter for PDM signal processing. Optics Letters, 2013, 38(14): 2379–2381
CrossRef Pubmed Google scholar
[36]
Zou J, Yu Y, Yang W, Wu Z, Ye M, Chen G, Liu L, Deng S, Zhang X. An SOI based polarization insensitive filter for all-optical clock recovery. Optics Express, 2014, 22(6): 6647–6652
CrossRef Pubmed Google scholar
[37]
Winzer P J, Essiambre R J. Advanced optical modulation formats. Proceedings of the IEEE, 2006, 94(5): 952–985
CrossRef Google scholar
[38]
Vaseghi S V. Advanced Signal Processing and Digital Noise Reduction. New York: Wiley, 1996
[39]
Maram R, Kong D, Galili M, Oxenlowe L K, Azana J. 640 Gbit/s RZ-to-NRZ format conversion based on optical phase filtering. In: Proceedings of IEEE Photonics Conference (IPC), 2014, 316–317
[40]
Ye T, Lu Y, Liu F, Zhang Q, Zhang Z, Qiu M, Su Y. 160-Gb/s NRZ-to-PSK conversion using linear filtering in silicon ring resonators. In: Proceedings of Lasers and Electro-Optics 2008 and 2008 Conference on Quantum Electronics and Laser Science (CLEO/QELS), 2008, JWA94
[41]
Heebner J, Grover R, Ibrahim T. Optical Microresonators: Theory, Fabrication, and Applications. Berlin: Springer, 2007

Acknowledgements

The authors would like to thank Prof. José Azaña from INRS in Canada for helpful suggestions in preparing the manuscript. This work was supported in part by the National Basic Research Program of China (No. 2011CB301704), the Nature Science Fund for Distinguished Young Scholars (No. 61125501), the National Natural Science Foundation of China (NSFC) Major International Joint Research Project (Grant No. 61320106016) and Foundation for Innovative Research Groups of the Natural Science Foundation of Hubei Province (No. 2014CFA004).

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(583 KB)

Accesses

Citations

Detail

Sections
Recommended

/