Low dispersion broadband integrated double-slot microring resonators optical buffer

Chuan WANG, Xiaoying LIU, Minming ZHANG, Peng ZHOU

PDF(241 KB)
PDF(241 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (4) : 571-577. DOI: 10.1007/s12200-016-0495-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Low dispersion broadband integrated double-slot microring resonators optical buffer

Author information +
History +

Abstract

Microring resonator optical buffer is attractive in high-speed optical network system, but ordinary microring resonator use strip waveguide as its basic light guide medium, which cannot provide small footprint, low dispersion and high delay-bandwidth product (DBP) simultaneously. Double-slot waveguide structure was first proposed to construct racetrack-microring resonators. It was found that cascading multiple microrings can increase the delay-bandwidth and lower the dispersion of the resonators by optimizing the structure parameters. Optical buffer cascaded by 8 microrings with flat bandwidth of 20 GHz provided the delay of 150 ps and the dispersion of ~107 ps/nm over 1530−1630 nm, and the footprint of each microring was about 51. This study can provide design methods and theoretical basis support for practical application.

Keywords

optical buffer / microring / resonator / delay / slot / waveguide / dispersion

Cite this article

Download citation ▾
Chuan WANG, Xiaoying LIU, Minming ZHANG, Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer. Front. Optoelectron., 2016, 9(4): 571‒577 https://doi.org/10.1007/s12200-016-0495-5

References

[1]
Melloni A, Morichetti F. The long march of slow photonics. Nature Photonics, 2009, 3(3): 119–119
CrossRef Google scholar
[2]
Sheng X, Dong X, Zhang X, Peng C. Advances in the research on all-optical buffers. Study on Optical Communications, 2012, (6): 52–55
[3]
Dutta M K, Chaubey V K. Modeling and performance analysis of optical packet switching network using fiber delay lines. In: Proceedings of India Conference. 2011, 1–4
[4]
Melloni A, Canciamilla A, Ferrari C, Morichetti F, O'Faolain L, Krauss T, De La Rue R, Samarelli A, Sorel M. Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison. IEEE Photonics Journal, 2010, 2(2): 181–194
CrossRef Google scholar
[5]
Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photonics, 2007, 1(1): 65–71
CrossRef Google scholar
[6]
Morichetti F, Ferrari C, Canciamilla A, Melloni A. The first decade of coupled resonator optical waveguides: bringing slow light to applications. Laser & Photonics Reviews, 2012, 6(1): 74–96
CrossRef Google scholar
[7]
Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Selvaraja S K, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73
CrossRef Google scholar
[8]
Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
CrossRef Pubmed Google scholar
[9]
Jágerská J, Thomas N L, Houdré R, Bolten J, Moormann C, Wahlbrink T, Ctyroký J, Waldow M, Först M. Dispersion properties of silicon nanophotonic waveguides investigated with Fourier optics. Optics Letters, 2007, 32(18): 2723–2725
CrossRef Pubmed Google scholar
[10]
Di Falco A, O’Faolain L, Krauss T F. Dispersion control and slow light in slotted photonic crystal waveguides. Applied Physics Letters, 2008, 92(8): 083501
CrossRef Google scholar
[11]
Zheng Z, Iqbal M, Liu J. Dispersion characteristics of SOI-based slot optical waveguides. Optics Communications, 2008, 281(20): 5151–5155
CrossRef Google scholar
[12]
Willner A E, Zhang L, Yue Y. Tailoring of dispersion and nonlinear properties of integrated silicon waveguides for signal processing applications. Semiconductor Science and Technology, 2011, 26(1): 014044
CrossRef Google scholar
[13]
Zhang L, Yue Y, Beausoleil R G, Willner A E. Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators. Optics Express, 2011, 19(9): 8102–8107
CrossRef Pubmed Google scholar
[14]
Bao C, Yan Y, Zhang L, Yue Y, Willner A E. Tailoring of low chromatic dispersion over a broadband in silicon waveguides using a double-slot design. In: Proceedings of Conference on Laser and Electro-Optics. 2013, JTu4A.53-1–JTu4A.53-2
[15]
Yan Y, Matsko A, Bao C, Maleki L, Willner A E. Increasing the spectral bandwidth of optical frequency comb generation in a microring resonator using dispersion tailoring slotted waveguide. In: Proceedings of IEEE Photonics Conference. 2013, 230–231
[16]
Bao C, Yan Y, Zhang L, Yue Y, Ahmed N, Agarwal A M, Kimerling L C, Michel J, Willner A E. Increased bandwidth with flattened and low dispersion in a horizontal double-slot silicon waveguide. Journal of the Optical Society of America B, Optical Physics, 2015, 32(1): 26–30
CrossRef Google scholar
[17]
Sun R, Dong P, Feng N N, Hong C Y, Michel J, Lipson M, Kimerling L. Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm. Optics Express, 2007, 15(26): 17967–17972PMID:19551093
CrossRef Google scholar
[18]
Prabhu A M, Tsay A, Han Z, Van V. Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications. IEEE Photonics Journal, 2010, 2(3): 436–444
CrossRef Google scholar
[19]
Selvaraja S K, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. Journal of Lightwave Technology, 2009, 27(18): 4076–4083
CrossRef Google scholar
[20]
Selvaraja S K, Bogaerts W, Dumon P, Van Thourhout D, Baets R. Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 316–324
CrossRef Google scholar
[21]
Selvaraja S K, De Vos K, Bogaerts W, Bienstman P, Van Thourhout D, Baets R. Effect of device density on the uniformity of silicon nano-photonic waveguide devices. In: Proceedings of IEEE LEOS Annual Meeting Conference. 2009, 311–312
[22]
Xiao S, Khan M H, Shen H, Qi M. Compact silicon microring resonators with ultra-low propagation loss in the C band. Optics Express, 2007, 15(22): 14467–14475
CrossRef Pubmed Google scholar
[23]
Bogaerts W, Selvaraja S K, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33–44
CrossRef Google scholar
[24]
Atabaki A H, Askari M, Eftekhar A A, Adibi A. Accurate post-fabrication trimming of silicon resonators. In: Proceedings of IEEE International Conference on Group IV Photonics GFP. 2012, 42–44
[25]
Boeck R, Chrostowski L, Jaeger N A. Thermally tunable quadruple Vernier racetrack resonators. Optics Letters, 2013, 38(14): 2440–2442
CrossRef Pubmed Google scholar
[26]
Shinobu F, Ishikura N, Arita Y, Tamanuki T, Baba T. Continuously tunable slow-light device consisting of heater-controlled silicon microring array. Optics Express, 2011, 19(14): 13557–13564
CrossRef Pubmed Google scholar
[27]
Fontaine N K, Yang J, Pan Z, Chu S, Chen W, Little B E, Ben Yoo S J. Continuously tunable optical buffering at 40 Gb/s for optical packet switching networks. Journal of Lightwave Technology, 2008, 26(23): 3776–3783
CrossRef Google scholar
[28]
Zhu M, Liu H, Li X, Huang N, Sun Q, Wen J, Wang Z. Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. Optics Express, 2012, 20(14): 15899–15907
CrossRef Pubmed Google scholar
[29]
Subbaraman H, Ling T, Jiang Y, Chen M Y, Cao P, Chen R T. Design of a broadband highly dispersive pure silica photonic crystal fiber. Applied Optics, 2007, 46(16): 3263–3268
CrossRef Pubmed Google scholar
[30]
Yoo H G, Fu Y, Riley D, Shin J H, Fauchet P M. Birefringence and optical power confinement in horizontal multi-slot waveguides made of Si and SiO2. Optics Express, 2008, 16(12): 8623–8628
CrossRef Pubmed Google scholar
[31]
Yang S H, Cooper M L, Bandaru P R, Mookherjea S. Giant birefringence in multi-slotted silicon nanophotonic waveguides. Optics Express, 2008, 16(11): 8306–8316
CrossRef Pubmed Google scholar
[32]
Ding R, Baehr-Jones T, Kim W, Boyko B, Bojko R, Spott A, Pomerene A, Hill C, Reinhardt W, Hochberg M. Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator. Applied Physics Letters, 2011, 98(23): 233303
CrossRef Google scholar
[33]
Uranus H P, Hoekstra H J W M. Modeling of loss-induced superluminal and negative group velocity in two-port ring-resonator circuits. Journal of Lightwave Technology, 2007, 25(9): 2376–2384
CrossRef Google scholar
[34]
Lou F. Theoretical study on microring resonators based all optical buffers. Dissertation for the Doctoral Degree.Wuhan: Huazhong University of Science and Technology, 2011, 21–27

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61107051) and National High-tech R&D Program (No. SS2012AA010407).

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(241 KB)

Accesses

Citations

Detail

Sections
Recommended

/