Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents
Cheng ZHANG, Jie ZHONG, Jiang TANG
Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents
Cu2ZnSn(S,Se)4 (CZTSSe) is considered as the promising absorbing layer materials for solar cells due to its earth-abundant constituents and excellent semiconductor properties. Through solution-processing, such as various printing methods, the fabrication of high performance CZTSSe solar cell could be applied to mass production with extremely low manufacturing cost and high yield speed. To better fulfill this goal, environmental-friendly inks/solutions are optimum for further reducing the capital investment on instrument, personnel and environmental safety. In this review, we summarized the recent development of CZTSSe thin films solar cells fabricated with benign solvents, such as water and ethanol. The disperse system can be classified to the true solution (consisting of molecules) and the colloidal suspension (consisting of nanoparticles).Three strategies for stabilization (i.e., physical method, chemical capping and self-stabilization) are proposed to prepare homogeneous and stable colloidal nanoinks. The one-pot self-stabilization method stands as an optimum route for preparing benign inks for its low impurity involvement and simple procedure. As-prepared CZTSSe inks would be deposited onto substrates to form thin films through spin-coating, spraying, electrodeposition or successive ionic layer adsorption and reaction (SILAR) method, followed by annealing in a chalcogen (S- or Se-containing) atmosphere to fabricate absorber. The efficiency of CZTSSe solar cell fabricated with benign solvents can also be enhanced by constituent adjustments, doping, surface treatments and blocking layers modifications, etc., and the deeper research will promise it a comparable performance to the non-benign CZTSSe systems.
Cu2ZnSn(S / Se)4 (CZTSSe) / solar cell / benign solvents / metal chalcogenide complexes (MCCs) / solution processing
[1] |
Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Applied Physics Express, 2008, 1(4): 041201
CrossRef
Google scholar
|
[2] |
Schubert B A, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock H W. Cu2ZnSnS4 thin film solar cells by fast coevaporation. Progress in Photovoltaics: Research and Applications, 2011, 19(1): 93–96
CrossRef
Google scholar
|
[3] |
Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 2014, 4(7):
CrossRef
Google scholar
|
[4] |
Zhang H, Hu B, Sun L, Hovden R, Wise F W, Muller D A, Robinson R D. Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. Nano Letters, 2011, 11(12): 5356–5361
CrossRef
Pubmed
Google scholar
|
[5] |
Kamoun N, Bouzouita H, Rezig B. Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films, 2007, 515(15): 5949–5952
CrossRef
Google scholar
|
[6] |
Zeng X, Tai K F, Zhang T, Ho C W J, Chen X, Huan A, Sum T C, Wong L H. Cu2ZnSn(S,Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization. Solar Energy Materials and Solar Cells, 2014, 124: 55–60
CrossRef
Google scholar
|
[7] |
Vigil-Galán O, Courel M, Espindola-Rodriguez M, Izquierdo-Roca V, Saucedo E, Fairbrother A. Toward a high Cu2ZnSnS4 solar cell efficiency processed by spray pyrolysis method. Journal of Renewable and Sustainable Energy, 2013, 5(5): 053137
CrossRef
Google scholar
|
[8] |
Yeh M Y, Lee C C, Wuu D S. Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol-gel spin-coated deposition. Journal of Sol-Gel Science and Technology, 2009, 52(1): 65–68
CrossRef
Google scholar
|
[9] |
Jiang M, Lan F, Yan X, Li G. Cu2ZnSn(S1-xSex)4thin film solar cells prepared by water-based solution process. Physica Status Solidi (RRL)- Rapid Research Letters, 2014, 8(3): 223–227
|
[10] |
Jiang M, Li Y, Dhakal R, Thapaliya P, Mastro M, Caldwell J, Kub F, Yan X. Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol-gel method. Journal of Photonics for Energy, 2011, 1(1): 019501
CrossRef
Google scholar
|
[11] |
Tian Q, Huang L, Zhao W, Yang Y, Wang G, Pan D. Metal sulfide precursor aqueous solutions for fabrication of Cu2ZnSn(S,Se)4 thin film solar cells. Green Chemistry, 2015, 17(2): 1269–1275
CrossRef
Google scholar
|
[12] |
Kishore Kumar Y B, Suresh Babu G, Uday Bhaskar P, Sundara Raja V. Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2009, 93(8): 1230–1237
CrossRef
Google scholar
|
[13] |
Zhong J, Xia Z, Zhang C, Li B, Liu X, Cheng Y B, Tang J. One-pot synthesis of self-stabilized aqueous nanoinks for Cu2ZnSn(S,Se)4 solar cells. Chemistry of Materials, 2014, 26(11): 3573–3578
CrossRef
Google scholar
|
[14] |
Woo K, Kim Y, Moon J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy & Environmental Science, 2012, 5(1): 5340–5345
CrossRef
Google scholar
|
[15] |
Larramona G, Bourdais S, Jacob A, Choné C, Muto T, Cuccaro Y, Delatouche B, Moisan C, Péré D, Dennler G. Efficient Cu2ZnSnS4 solar cells spray coated from a hydro-alcoholic colloid synthesized by instantaneous reaction. RSC Advances, 2014, 4(28): 14655–14662
CrossRef
Google scholar
|
[16] |
Larramona G, Bourdais S, Jacob A, Choné C, Muto T, Cuccaro Y, Delatouche B, Moisan C, Péré D, Dennler G. 8.6% efficient CZTSSe solar cells sprayed from water-ethanol CZTS colloidal solutions. Journal of Physical Chemistry Letters, 2014, 5(21): 3763–3767
CrossRef
Google scholar
|
[17] |
Li Z, Ho J C W, Lee K K, Zeng X, Zhang T, Wong L H, Lam Y M. Environmentally friendly solution route to kesterite Cu2ZnSn(S,Se)4 thin films for solar cell applications. RSC Advances, 2014, 4(51): 26888–26894
CrossRef
Google scholar
|
[18] |
Chen G, Yuan C, Liu J, Huang Z, Chen S, Liu W, Jiang G, Zhu C. Fabrication of Cu2ZnSnS4 thin films using oxides nanoparticles ink for solar cell. Journal of Power Sources, 2015, 276: 145–152
CrossRef
Google scholar
|
[19] |
van Embden J, Chesman A S, Della Gaspera E, Duffy N W, Watkins S E, Jasieniak J J. Cu₂ZnSnS4xSe4(1-x) solar cells from polar nanocrystal inks. Journal of the American Chemical Society, 2014, 136(14): 5237–5240
CrossRef
Pubmed
Google scholar
|
[20] |
Kang C C, Chen H F, Yu T C, Lin T C. Aqueous synthesis of wurtzite Cu2ZnSnS4 nanocrystals. Materials Letters, 2013, 96: 24–26
CrossRef
Google scholar
|
[21] |
Kush P, Ujjain S K, Mehra N C, Jha P, Sharma R K, Deka S. Development and properties of surfactant-free water-dispersible Cu2ZnSnS4 nanocrystals: a material for low-cost photovoltaics. Chemphyschem: a European journal of Chemical Physics and Physical Chemistry, 2013, 14(12): 2793–2799
|
[22] |
Liu W, Guo B, Mak C, Li A, Wu X, Zhang F. Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films, 2013, 535: 39–43
CrossRef
Google scholar
|
[23] |
Tian Q, Xu X, Han L, Tang M, Zou R, Chen Z, Yu M, Yang J, Hu J. Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm, 2012, 14(11): 3847–3850
CrossRef
Google scholar
|
[24] |
Hsu K C, Liao J D, Chao L M, Fu Y S. Fabrication and characterization of Cu2ZnSnS4 powders by a hydrothermal method. Japanese Journal of Applied Physics, 2013, 52(6R): 061202
CrossRef
Google scholar
|
[25] |
Camara S M, Wang L, Zhang X. Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application. Nanotechnology, 2013, 24(49): 495401
CrossRef
Pubmed
Google scholar
|
[26] |
Jiang H, Dai P, Feng Z, Fan W, Zhan J. Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. Journal of Materials Chemistry, 2012, 22(15): 7502–7506
CrossRef
Google scholar
|
[27] |
Tiong V T, Bell J, Wang H. One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals- a hydrothermal approach. Beilstein Journal of Nanotechnology, 2014, 5: 438–446
CrossRef
Pubmed
Google scholar
|
[28] |
Tiong V T, Zhang Y, Bell J, Wang H. Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: the effect of the sulphur precursor. CrystEngComm, 2014, 16(20): 4306–4313
CrossRef
Google scholar
|
[29] |
Zhao Y, Zhou W H, Jiao J, Zhou Z J, Wu S X. Aqueous synthesis and characterization of hydrophilic Cu2ZnSnS4 nanocrystals. Materials Letters, 2013, 96: 174–176
CrossRef
Google scholar
|
[30] |
Kovalenko M V, Scheele M, Talapin D V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science, 2009, 324(5933): 1417–1420
CrossRef
Pubmed
Google scholar
|
[31] |
Kovalenko M V, Bodnarchuk M I, Zaumseil J, Lee J S, Talapin D V. Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. Journal of the American Chemical Society, 2010, 132(29): 10085–10092
CrossRef
Pubmed
Google scholar
|
[32] |
Jiang C, Lee J S, Talapin D V. Soluble precursors for CuInSe2, CuIn1-xGaxSe2, and Cu2ZnSn(S,Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands. Journal of the American Chemical Society, 2012, 134(11): 5010–5013
CrossRef
Pubmed
Google scholar
|
[33] |
Zhou H, Duan H S, Yang W, Chen Q, Hsu C J, Hsu W C, Chen C C, Yang Y. Facile single-component precursor for Cu2ZnSnS4 with enhanced phase and composition controllability. Energy & Environmental Science, 2014, 7(3): 998–1005
CrossRef
Google scholar
|
[34] |
Su Z, Sun K, Han Z, Cui H, Liu F, Lai Y, Li J, Hao X, Liu Y, Green M A. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(2): 500–509
CrossRef
Google scholar
|
[35] |
Kim S, Kim J. Effect of selenization on sprayed Cu2ZnSnS4 thin film solar cell. Thin Solid Films, 2013, 547: 178–180
CrossRef
Google scholar
|
[36] |
Scragg J J, Berg D M, Dale P J A. 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. Journal of Electroanalytical Chemistry, 2010, 646(1–2): 52–59
CrossRef
Google scholar
|
[37] |
Araki H, Kubo Y, Mikaduki A, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Oishi K, Takeuchi A. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 996–999
CrossRef
Google scholar
|
[38] |
Scragg J J, Dale P J, Peter L M. Towards sustainable materials for solar energy conversion: preparation and photoelectrochemical characterization of Cu2ZnSnS4. Electrochemistry Communications, 2008, 10(4): 639–642
CrossRef
Google scholar
|
[39] |
Scragg J J, Dale P J, Peter L M. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealin88g route. Thin Solid Films, 2009, 517(7): 2481–2484
CrossRef
Google scholar
|
[40] |
Iljina J, Zhang R, Ganchev M, Raadik T, Volobujeva O, Altosaar M, Traksmaa R, Mellikov E. Formation of Cu2ZnSnS4 absorber layers for solar cells by electrodeposition-annealing route. Thin Solid Films, 2013, 537: 85–89
CrossRef
Google scholar
|
[41] |
Ennaoui A, Lux-Steiner M, Weber A, Abou-Ras D, Kötschau I, Schock H W, Schurr R, Hölzing A, Jost S, Hock R, Voß T, Schulze J, Kirbs A. Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films, 2009, 517(7): 2511–2514
CrossRef
Google scholar
|
[42] |
Wang Y, Ma J, Liu P, Chen Y, Li R, Gu J, Lu J, Yang S, Gao X. Cu2ZnSnS4 films deposited by a co-electrodeposition-annealing route. Materials Letters, 2012, 77: 13–16
CrossRef
Google scholar
|
[43] |
Pawar S M, Pawar B S, Moholkar A V, Choi D S, Yun J H, Moon J H, Kolekar S S, Kim J H. Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 2010, 55(12): 4057–4061
CrossRef
Google scholar
|
[44] |
Schurr R, Hölzing A, Jost S, Hock R, Voß T, Schulze J, Kirbs A, Ennaoui A, Lux-Steiner M, Weber A, Kötschau I, Schock H W. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors. Thin Solid Films, 2009, 517(7): 2465–2468
CrossRef
Google scholar
|
[45] |
Chan C P, Lam H, Surya C. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Solar Energy Materials and Solar Cells, 2010, 94(2): 207–211
CrossRef
Google scholar
|
[46] |
Mali S S, Patil B M, Betty C A, Bhosale P N, Oh Y W, Jadkar S R, Devan R S, Ma Y R, Patil P S. Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction echnique: characterization and application. Electrochimica Acta, 2012, 66: 216–221
CrossRef
Google scholar
|
[47] |
Mali S S, Shinde P S, Betty C A, Bhosale P N, Oh Y W, Patil P S. Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. Journal of Physics and Chemistry of Solids, 2012, 73(6): 735–740
CrossRef
Google scholar
|
[48] |
Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H. Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Materials Research Bulletin, 2012, 47(2): 302–307
CrossRef
Google scholar
|
[49] |
Shinde N M, Deshmukh P R, Patil S V, Lokhande C D. Aqueous chemical growth of Cu2ZnSnS4 (CZTS) thin films: air annealing and photoelectrochemical properties. Materials Research Bulletin, 2013, 48(5): 1760–1766
CrossRef
Google scholar
|
[50] |
Patel K, Shah D V, Kheraj V. Influence of deposition parameters and annealing on Cu2ZnSnS4 thin films grown by SILAR. Journal of Alloys and Compounds, 2015, 622: 942–947
CrossRef
Google scholar
|
[51] |
Su Z, Yan C, Sun K, Han Z, Liu F, Liu J, Lai Y, Li J, Liu Y. Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method. Applied Surface Science, 2012, 258(19): 7678–7682
CrossRef
Google scholar
|
[52] |
Gao C, Shen H, Jiang F, Guan H. Preparation of Cu2ZnSnS4 film by sulfurizing solution deposited precursors. Applied Surface Science, 2012, 261: 189–192
CrossRef
Google scholar
|
[53] |
Wangperawong A, King J S, Herron S M, Tran B P, Pangan-Okimoto K, Bent S F. Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films, 2011, 519(8): 2488–2492
CrossRef
Google scholar
|
[54] |
Moriya K, Tanaka K, Uchiki H. Characterization of Cu2ZnSnS4thin films prepared by photo-chemical deposition. Japanese Journal of Applied Physics, 2005, 44(1B): 715–717
CrossRef
Google scholar
|
[55] |
Shinde N M, Lokhande C D, Kim J H, Moon J H. Low cost and large area novel chemical synthesis of Cu2ZnSnS4 (CZTS) thin films. Journal of Photochemistry and Photobiology A Chemistry, 2012, 235: 14–20
CrossRef
Google scholar
|
[56] |
Chen S, Walsh A, Gong X G, Wei S H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Advanced Materials, 2013, 25(11): 1522–1539
CrossRef
Pubmed
Google scholar
|
[57] |
Hergert F, Hock R. Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X = S, Se) starting from binary chalcogenides. Thin Solid Films, 2007, 515(15): 5953–5956
CrossRef
Google scholar
|
[58] |
Shin S W, Pawar S M, Park C Y, Yun J H, Moon J H, Kim J H, Lee J Y. Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Solar Energy Materials and Solar Cells, 2011, 95(12): 3202–3206
CrossRef
Google scholar
|
[59] |
Mitzi D B, Gunawan O, Todorov T K, Wang K, Guha S. The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials and Solar Cells, 2011, 95(6): 1421–1436
CrossRef
Google scholar
|
[60] |
Polizzotti A, Repins I L, Noufi R, Wei S H, Mitzi D B. The state and future prospects of kesterite photovoltaics. Energy & Environmental Science, 2013, 6(11): 3171–3182
CrossRef
Google scholar
|
[61] |
Vigil-Galán O, Courel M, Andrade-Arvizu J A, Sánchez Y, Espíndola-Rodríguez M, Saucedo E, Seuret-Jiménez D, Titsworth M. Route towards low cost-high efficiency second generation solar cells: current status and perspectives. Journal of Materials Science Materials in Electronics, 2015, 26(8): 5562–5573
CrossRef
Google scholar
|
[62] |
Chen S, Gong X G, Walsh A, Wei S H. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Applied Physics Letters, 2010, 96(2): 021902
CrossRef
Google scholar
|
[63] |
Vigil-Galán O, Espíndola-Rodríguez M, Courel M, Fontané X, Sylla D, Izquierdo-Roca V, Fairbrother A, Saucedo E, Pérez-Rodríguez A. Secondary phases dependence on composition ratio in sprayed Cu2ZnSnS4 thin films and its impact on the high power conversion efficiency. Solar Energy Materials and Solar Cells, 2013, 117: 246–250
CrossRef
Google scholar
|
[64] |
Wen Q, Li Y, Yan J, Wang C. Crystal size-controlled growth of Cu2ZnSnS4 films by optimizing the Na doping concentration. Materials Letters, 2015, 140: 16–19
CrossRef
Google scholar
|
[65] |
Prabhakar T, Jampana N. Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2011, 95(3): 1001–1004
CrossRef
Google scholar
|
[66] |
Tong Z, Yan C, Su Z, Zeng F, Yang J, Li Y, Jiang L, Lai Y, Liu F. Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin film solar cells. Applied Physics Letters, 2014, 105(22): 223903
CrossRef
Google scholar
|
[67] |
Johnson M, Baryshev S V, Thimsen E, Manno M, Zhang X, Veryovkin I V, Leighton C, Aydil E S. Alkali-metal-enhanced grain growth in Cu2ZnSnS4thin films. Energy & Environmental Science, 2014, 7(6): 1931–1938
CrossRef
Google scholar
|
[68] |
Zhou H, Song T B, Hsu W C, Luo S, Ye S, Duan H S, Hsu C J, Yang W, Yang Y. Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals. Journal of the American Chemical Society, 2013, 135(43): 15998–16001
CrossRef
Pubmed
Google scholar
|
[69] |
Nagaoka A, Miyake H, Taniyama T, Kakimoto K, Nose Y, Scarpulla M A, Yoshino K. Effects of sodium on electrical properties in Cu2ZnSnS4 single crystal. Applied Physics Letters, 2014, 104(15): 152101
CrossRef
Google scholar
|
[70] |
Todorov T, Mitzi D B. Direct liquid coating of chalcopyrite light-absorbing layers for photovoltaic devices. European Journal of Inorganic Chemistry, 2010, 2010(1): 17–28
CrossRef
Google scholar
|
[71] |
Zhong J, Xia Z, Luo M, Zhao J, Chen J, Wang L, Liu X, Xue D J, Cheng Y B, Song H, Tang J. Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S,Se)4 solar cells. Scientific Reports, 2014, 4: 6288–6296
CrossRef
Pubmed
Google scholar
|
[72] |
Walter T, Herberholz R, Müller C, Schock H W. Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. Journal of Applied Physics, 1996, 80(8): 4411
CrossRef
Google scholar
|
[73] |
Shin B, Bojarczuk N A, Guha S. On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact. Applied Physics Letters, 2013, 102(9): 091907
CrossRef
Google scholar
|
[74] |
Cui H, Lee C Y, Li W, Liu X, Wen X, Hao X. Improving efficiency of evaporated Cu2ZnSnS4 thin film solar cells by a thin Ag intermediate layer between absorber and back contact. International Journal of Photoenergy, 2015, 170507
CrossRef
Google scholar
|
[75] |
Liu X, Cui H, Li W, Song N, Liu F, Conibeer G, Hao X. Improving Cu2ZnSnS4 (CZTS) solar cell performance by an ultrathin ZnO intermediate layer between CZTS absorber and Mo back contact. Physica Status Solidi (RRL)- Rapid Research Letters, 2014, 8(12): 966–970
|
[76] |
Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 72–76
CrossRef
Google scholar
|
[77] |
Liu F, Sun K, Li W, Yan C, Cui H, Jiang L, Hao X, Green M A. Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Applied Physics Letters, 2014, 104(5): 051105
CrossRef
Google scholar
|
/
〈 | 〉 |