Changes of muscle oxygenation and blood lactate concentration of swimming athletes during graded incremental exercise

Yuxiang WU, Tao SONG, Guodong XU

PDF(341 KB)
PDF(341 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (4) : 451-455. DOI: 10.1007/s12200-015-0532-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Changes of muscle oxygenation and blood lactate concentration of swimming athletes during graded incremental exercise

Author information +
History +

Abstract

The sport performance of swimming athletes in three different levels including 5 national high-level swimming athletes, 5 ordinary swimming athletes and 5 college students was investigated by near-infrared spectroscopy (NIRS). Four parameters of muscle oxygenation and blood lactate (BLa) concentration were simultaneously monitored during incremental exercise on the ergometer. It was found that inflection points of muscle oxygenation and BLa concentration were consistent with the human sport capacity. Moreover, inflection points of muscle oxygenation occurred earlier than those of BLa concentration in ordinary athletes and college students. It implies monitoring changes of muscle oxygenation is superior to BLa measurement under this condition, since BLa test has an unavoidable time lag. Significant correlation (r2 = 0.948; P<0.05) was observed between inflection points of muscle oxygenation difference and inflection points of BLa concentration on workload. This relationship suggests changes of muscle oxygenation detected by NIRS is beneficial to the evaluation of athletes’ physiologic function and training load. Considering that muscle oxygenation could be in-vivo and non-invasively measured by NIRS, it may be a better indicator of exercise intensity than BLa measurement in the near future.

Keywords

functional evaluation / muscle oxygenation / near-infrared spectroscopy (NIRS) / blood lactate (BLa)

Cite this article

Download citation ▾
Yuxiang WU, Tao SONG, Guodong XU. Changes of muscle oxygenation and blood lactate concentration of swimming athletes during graded incremental exercise. Front. Optoelectron., 2015, 8(4): 451‒455 https://doi.org/10.1007/s12200-015-0532-9

References

[1]
Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Canadian Journal of Applied Physiology, 2004, 29(4): 463–487
CrossRef Pubmed Google scholar
[2]
Hollmann W. 42 years ago—development of the concepts of ventilatory and lactate threshold. Sports Medicine (Auckland, N.Z.), 2001, 31(5): 315–320
CrossRef Pubmed Google scholar
[3]
Jöbsis F F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 1977, 198(4323): 1264–1267
CrossRef Pubmed Google scholar
[4]
Nioka S, Moser D, Lech G, Evengelisti M, Verde T, Chance B, Kuno S. Muscle deoxygenation in aerobic and anaerobic exercise. Advances in Experimental Medicine and Biology, 1998, 454: 63–70
CrossRef Pubmed Google scholar
[5]
Treacher D F, Leach R M. Oxygen transport-1. basic principles. British Medical Journal, 1998, 317(7168): 1302–1306
CrossRef Pubmed Google scholar
[6]
Beneke R, Leithäuser R M, Ochentel O. Blood lactate diagnostics in exercise testing and training. International Journal of Sports Physiology and Performance, 2011, 6(1): 8–24
Pubmed
[7]
Devlin J, Paton B, Poole L, Sun W, Ferguson C, Wilson J, Kemi O J. Blood lactate clearance after maximal exercise depends on active recovery intensity. Journal of Sports Medicine and Physical Fitness, 2014, 54(3): 271–278
Pubmed
[8]
Aguiar R A, Cruz R S, Turnes T, Pereira K L, Caputo F. Relationships between VO2 and blood lactate responses after all-out running exercise. Applied Physiology, Nutrition, and Metabolism, 2015, 40(3): 263–268
CrossRef Pubmed Google scholar
[9]
Baker J S, Thomas N, Cooper S M, Davies B, Robergs R A. Exercise duration and blood lactate concentrations following high intensity cycle ergometry. Research in Sports Medicine, 2012, 20(2): 129–141
Pubmed
[10]
Bellezza P A, Hall E E, Miller P C, Bixby W R. The influence of exercise order on blood lactate, perceptual, and affective responses. Journal of Strength and Conditioning Research, 2009, 23(1): 203–208
CrossRef Pubmed Google scholar
[11]
Faude O, Kindermann W, Meyer T. Lactate threshold concepts: how valid are they? Sports Medicine (Auckland, N.Z.), 2009, 39(6): 469–490
CrossRef Pubmed Google scholar
[12]
Garcia-Tabar I, Llodio I, Sánchez-Medina L, Ruesta M, Ibañez J, Gorostiaga E M. Heart rate based prediction of fixed blood lactate thresholds in professional team-sport players. Journal of Strength and Conditioning Research, 2015,  29(10): 2794–801
CrossRef Pubmed Google scholar
[13]
Bhambhani Y N. Muscle oxygenation trends during dynamic exercise measured by near infrared spectroscopy. Canadian Journal of Applied Physiology, 2004, 29(4): 504–523
CrossRef Pubmed Google scholar
[14]
Chance B, Anday E, Nioka S, Zhou S, Hong L, Worden K, Li C, Murray T, Ovetsky Y, Pidikiti D, Thomas R. A novel method for fast imaging of brain function, non-invasively, with light. Optics Express, 1998, 2(10): 411–423
CrossRef Pubmed Google scholar
[15]
Hamaoka T, McCully K K, Quaresima V, Yamamoto K, Chance B. Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. Journal of Biomedical Optics, 2007, 12(6): 062105
[16]
McCully K. Near infrared spectroscopy in the evaluation of skeletal muscle disease. Muscle & Nerve, 2002, 25(5): 629–631
CrossRef Pubmed Google scholar
[17]
Quaresima V, Ferrari M. Muscle oxygenation by near-infrared-based tissue oximeters. Journal of Applied Physiology (1985), 2009, 107(1): 371
[18]
Lai N, Zhou H, Saidel G M, Wolf M, McCully K, Gladden L B, Cabrera M E. Modeling oxygenation in venous blood and skeletal muscle in response to exercise using near-infrared spectroscopy. Journal of Applied Physiology (1985), 2009, 106(6): 1858–1874
[19]
Sassaroli A, Fantini S. Comment on the modified Beer-Lambert law for scattering media. Physics in Medicine and Biology, 2004, 49(14): N255–N257
CrossRef Pubmed Google scholar
[20]
Villringer A, Chance B. Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences, 1997, 20(10): 435–442
CrossRef Pubmed Google scholar
[21]
Wolf M, Ferrari M, Quaresima V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. Journal of Biomedical Optics, 2007, 12(6): 062104
CrossRef Pubmed Google scholar
[22]
Zhang Z, Wang B, Nie Q, Luo Q, Gong H. Portable muscle oxygenation monitor based on near infrared spectroscopy. Frontiers of Optoelectronics in China, 2009, 2(3): 248–252
CrossRef Google scholar
[23]
Zhang Z, Wang B, Gong H, Xu G, Nioka S, Chance B. Comparisons of muscle oxygenation changes between arm and leg muscles during incremental rowing exercise with near-infrared spectroscopy. Journal of Biomedical Optics, 2010, 15(1): 017007–017008
CrossRef Pubmed Google scholar
[24]
Wang B, Tian Q, Zhang Z, Gong H. Comparisons of local and systemic aerobic fitness parameters between finswimmers with different athlete grade levels. European Journal of Applied Physiology, 2012, 112(2): 567–578
CrossRef Pubmed Google scholar
[25]
Grassi B, Quaresima V, Marconi C, Ferrari M, Cerretelli P. Blood lactate accumulation and muscle deoxygenation during incremental exercise. Journal of Applied Physiology, 1999, 87(1): 348–355
Pubmed
[26]
Xu G, Mao Z, Ye Y, Lv K. Relationship between muscle oxygenation by NIRS and blood lactate. Journal of Physics: Conference Series, 2011, 277(1): 012042
CrossRef Google scholar
[27]
Xu G D, Liu F, Gong H, Ge X F, Luo Q M. Blood oxygen and lactate concentrations in skeletal muscles during exercise. Space Medicine & Medical Engineering, 2003, 16(1): 41–43
Pubmed

Acknowledgements

This work was supported by the Educational Commission of Hubei Province of China (No. B2013154).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(341 KB)

Accesses

Citations

Detail

Sections
Recommended

/