ITO surface modification for inverted organic photovoltaics

Mingzhang DENG, Weina SHI, Chen ZHAO, Bingbing CHEN, Yan SHEN

PDF(622 KB)
PDF(622 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (3) : 269-273. DOI: 10.1007/s12200-015-0531-x
RESEARCH ARTICLE
RESEARCH ARTICLE

ITO surface modification for inverted organic photovoltaics

Author information +
History +

Abstract

The work function (WF) of indium-tin-oxide (ITO) substrates plays an important role on the inverted organic photovoltaic device performance. And electrode engineering has been a useful method to facilitate carrier extraction or charge collection to enhance organic photovoltaic (OPV) performance. By using self-assembly technique, we have deposited poly(dimethyl diallylammonium chloride) (PDDA) layers onto ITO coated glass substrates. The results indicate that the surface WF of ITO is reduced by about 0.3 eV after PDDA modification, which is attributed to the modulation in electron affinity. In addition, the surface roughness of ITO substrate became smaller after PDDA modification. These modified ITO substrates can be applied to fabricate inverted OPVs, in which ITO works as the cathode to collect electrons. As a result, the photovoltaic performance of inverted OPV is substantially improved, mainly reflecting on the increase of short circuit current density.

Keywords

organic photovoltaic (OPV) / indium tin oxide (ITO) / inverted structure / surface modification / work function (WF)

Cite this article

Download citation ▾
Mingzhang DENG, Weina SHI, Chen ZHAO, Bingbing CHEN, Yan SHEN. ITO surface modification for inverted organic photovoltaics. Front. Optoelectron., 2015, 8(3): 269‒273 https://doi.org/10.1007/s12200-015-0531-x

References

[1]
Hoppe H, Sariciftci N S. Organic solar cells: an overview. Journal of Materials Research, 2004, 19(7): 1924–1945
CrossRef Google scholar
[2]
Cnops K, Rand B P, Cheyns D, Verreet B, Empl M A, Heremans P. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nature Communications, 2014, 5: 3406
CrossRef Pubmed Google scholar
[3]
Cao W, Xue J. Recent progress in organic photovoltaics: device architecture and optical design. Energy & Environmental Science, 2014, 7(7): 2123–2144
CrossRef Google scholar
[4]
Jørgensen M, Norrman K, Krebs F. Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells, 2008, 92(7): 686–714
CrossRef Google scholar
[5]
He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics, 2012, 6(9): 591–595
CrossRef Google scholar
[6]
Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A, Kippelen B. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336(6079): 327–332
CrossRef Pubmed Google scholar
[7]
Min X, Jiang F, Qin F, Li Z, Tong J, Xiong S, Meng W, Zhou Y. Polyethylenimine aqueous solution: a low-cost and environmentally friendly formulation to produce low-work-function electrodes for efficient easy-to-fabricate organic solar cells. ACS Applied Materials & Interfaces, 2014, 6(24): 22628–22633
CrossRef Pubmed Google scholar
[8]
Guo Z, Shen Y, Wang M, Zhao F, Dong S. electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/Tris (2,2-bipyridyl)ruthenium(II) multilayer films on Indium Tin oxide electrodes. Analytical Chemistry, 2004, 76(1): 184–191
CrossRef Google scholar
[9]
Li L S, Li A D Q, Jia Q X. Effects of self-assembled multilayers on the evolution of surface physical properties of indium-tin-oxide. Applied Surface Science, 2003, 219(3-4): 199–202
CrossRef Google scholar
[10]
Ma W, Yang C, Gong X, Lee K, Heeger A J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials, 2005, 15(10): 1617–1622
CrossRef Google scholar
[11]
Park Y, Choong V, Gao Y, Hsieh B R, Tang C W. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Applied Physics Letters, 1996, 68(19): 2699–2701
CrossRef Google scholar
[12]
Manor A, Katz E A. Open-circuit voltage of organic photovoltaics: Implications of the generalized Einstein relation for disordered semiconductors. Solar Energy Materials and Solar Cells, 2012, 97: 132–138
CrossRef Google scholar
[13]
Zhang C, You H, Lin Z, Hao Y. Inverted organic photovoltaic cells with solution-processed zinc oxide as electron collecting layer. Japanese Journal of Applied Physics, 2011, 50(8R): 082302
CrossRef Google scholar
[14]
Zhao D W, Sun X W, Jiang C Y, Kyaw A K K, Lo G Q, Kwong D L. Efficient tandem organic solar cells with an Al/MoO3 intermediate layer. Applied Physics Letters, 2008, 93(8): 083305
CrossRef Google scholar
[15]
Tao C, Ruan S, Zhang X, Xie G, Shen L, Kong X, Dong W, Liu C, Chen W. Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer. Applied Physics Letters, 2008, 93(19): 193307
CrossRef Google scholar

Acknowledgement

The financial support from the Director Fund of the Wuhan National Laboratory for Optoelectronics, the Major State Basic Research Development Program of China (Nos. 2014CB643506 and 2013CB922104) is acknowledged.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(622 KB)

Accesses

Citations

Detail

Sections
Recommended

/