Building one-dimensional Bi2S3 nanorods as enhanced photoresponding materials for photodetectors

Taotao DING, Yu TIAN, Jiangnan DAI, Changqing CHEN

PDF(1632 KB)
PDF(1632 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (3) : 282-288. DOI: 10.1007/s12200-015-0529-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Building one-dimensional Bi2S3 nanorods as enhanced photoresponding materials for photodetectors

Author information +
History +

Abstract

In this paper, Bi2S3 nanorods were successfully synthesized via a facile one-pot hydrothermal method and characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Then the Bi2S3 nanorods were deposited on Au interdigital electrodes by dip-coating to fabricate photodetectors. The photoresponse properties using Bi2S3 nanorods as a representative system showed a significantly enhanced conductivity and the current-voltage (I-V) characteristic exhibited about ca. 2 orders of magnitude larger than the dark current. The response and decay time was estimated to be ~371.66 and 386 ms, respectively, indicating Bi2S3 may be an excellent candidate for high speed and high-sensitivity photoelectrical switches and light sensitive devices.

Keywords

Bi2S3 / nanorods / photoresponse property / photodetector

Cite this article

Download citation ▾
Taotao DING, Yu TIAN, Jiangnan DAI, Changqing CHEN. Building one-dimensional Bi2S3 nanorods as enhanced photoresponding materials for photodetectors. Front. Optoelectron., 2015, 8(3): 282‒288 https://doi.org/10.1007/s12200-015-0529-4

References

[1]
Chen Y C, Cao T, Chen C, Pedramrazi Z, Haberer D, de Oteyza D G, Fischer F R, Louie S G, Crommie M F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nature Nanotechnology, 2015, 10(2): 156–160
CrossRef Pubmed Google scholar
[2]
Rao P M, Cai L, Liu C, Cho I S, Lee C H, Weisse J M, Yang P, Zheng X. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Letters, 2014, 14(2): 1099–1105
CrossRef Pubmed Google scholar
[3]
Peng S, Li L, Wu H B, Madhavi S, Lou X W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Advanced Energy Materials, 2015, 5(2): 1401172
[4]
Tan C, Qi X, Huang X, Yang J, Zheng B, An Z, Chen R, Wei J, Tang B Z, Huang W, Zhang H. Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence. Advanced Materials, 2014, 26(11): 1735–1739
CrossRef Pubmed Google scholar
[5]
Huang X, Yu H, Chen J, Lu Z, Yazami R, Hng H H. Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration. Advanced Materials, 2014, 26(8): 1296–1303
CrossRef Pubmed Google scholar
[6]
Giri A K, Pal P, Ananthakumar R, Jayachandran M, Mahanty S, Panda A B. 3D hierarchically assembled porous wrinkled-paper-like structure of ZnCo2O4 and Co-ZnO@C as anode materials for lithium-ion batteries. Crystal Growth & Design, 2014, 14(7): 3352–3359
CrossRef Google scholar
[7]
Cheng C, Ren W, Zhang H. 3D TiO2/SnO2 hierarchically branched nanowires on transparent FTO substrate as photoanode for efficient water splitting. Nano Energy, 2014, 5: 132–138
CrossRef Google scholar
[8]
Choy J H, Jang E S, Won J H, Chung J H, Jang D J, Kim Y W. Soft solution route to directionally grown ZnOnanorodarrays on Si wafer; room-temperature ultraviolet laser. Advanced Materials, 2003, 15(22): 1911–1914
CrossRef Google scholar
[9]
Huang H, Pan L, Lim C K, Gong H, Guo J, Tse M S, Tan O K. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. Small, 2013, 9(18): 3153–3160
CrossRef Pubmed Google scholar
[10]
Liao J Y, Lei B X, Chen H Y, Kuang D B, Su C Y. Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy & Environmental Science, 2012, 5(2): 5750–5757
CrossRef Google scholar
[11]
Guo W, Xu C, Wang X, Wang S H, Pan C, Lin C, Wang Z L. Rectangular bunched rutile TiO2 nanorodarrays grown on carbon fiber for dye-sensitized solar cells. Journal of the American Chemical Society, 2012, 134(9): 4437–4441
CrossRef Pubmed Google scholar
[12]
Tang Z R, Li F, Zhang Y, Fu X, Xu Y J. Composites of titanatenanotube and carbon nanotube as photocatalyst with high mineralization ratio for gas-phase degradation of volatile aromatic pollutant. Journal of Physical Chemistry C, 2011, 115(16): 7880–7886
CrossRef Google scholar
[13]
Jiang J, Li Y, Liu J, Huang X. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale, 2011, 3(1): 45–58
CrossRef Pubmed Google scholar
[14]
Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242–246
CrossRef Pubmed Google scholar
[15]
Martinez L, Bernechea M, de Arquer F P G, Konstantatos G. Near IR-sensitive, non-toxic, polymer/nanocrystalsolar cells employing Bi2S3 as the electron acceptor. Advanced Energy Materials, 2011, 1(6): 1029–1035
CrossRef Google scholar
[16]
Xiao G, Dong Q, Wang Y, Sui Y, Ning J, Liu Z, Tian W, Liu B, Zou G, Zou B. One-step solution synthesis of bismuth sulfide (Bi2S3) with various hierarchical architectures and their photoresponse properties. RSC Advances, 2012, 2(1): 234–240
CrossRef Google scholar
[17]
Li Y, Wei F, Ma Y, Zhang H, Gao Z, Dai L, Qin G. Selected-control hydrothermal synthesis and photoresponse properties of Bi2S3micro/nanocrystals. CryEngComm, 2013, 15(33): 6611–6616
CrossRef Google scholar
[18]
Konstantatos G, Levina L, Tang J, Sargent E H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Letters, 2008, 8(11): 4002–4006
CrossRef Pubmed Google scholar
[19]
Yao K, Gong W W, Hu Y F, Liang X L, Chen Q, Peng L M. Individual Bi2S3 nanowire-based room-temperature H2 sensor. Journal of Physical Chemistry C, 2008, 112(23): 8721–8724
CrossRef Google scholar
[20]
Bao H, Li C M, Cui X, Gan Y, Song Q, Guo J. Synthesis of a highly ordered single-crystalline Bi2S3 nanowire array and its metal/semiconductor/metal back-to-back Schottky diode. Small, 2008, 4(8): 1125–1129
CrossRef Pubmed Google scholar
[21]
Ma J, Liu Z, Lian J, Duan X, Kim T, Peng P, Liu X, Chen Q, Yao G, Zheng W. Ionic liquids-assisted synthesis and electrochemical properties of Bi2S3 nanostructures. CrystEngComm, 2011, 13(8): 3072–3079
CrossRef Google scholar
[22]
Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nature Materials, 2006, 5(2): 118–122
CrossRef Pubmed Google scholar
[23]
Schricker A D, Sigman M B Jr, Korgel B A. Electrical transport, Meyer–Neldel rule and oxygen sensitivity of Bi2S3 nanowires. Nanotechnology, 2005, 16(7): S508–S513
CrossRef Google scholar
[24]
Liao X H, Wang H, Zhu J J, Chen H Y. Preparation of Bi2S3 nanorods by microwave irradiation. Materials Research Bulletin, 2001, 36(13-14): 2339–2346
CrossRef Google scholar
[25]
Tang C J, Wang G Z, Wang H Q, Zhang Y X, Li G H. Facile synthesis of Bi2S3 nanowire arrays. Materials Letters, 2008, 62(21-22): 3663–3665
CrossRef Google scholar
[26]
Tang C, Wang C, Su F, Zang C, Yang Y, Zong Z, Zhang Y. Controlled synthesis of urchin-like Bi2S3 via hydrothermal method. Solid State Sciences, 2010, 12(8): 1352–1356
CrossRef Google scholar
[27]
Lu F, Li R, Li Y, Huo N, Yang J, Li Y, Li B, Yang S, Wei Z, Li J . Improving the field-effect performance of Bi2S3 single nanowires by an asymmetric device fabrication. A European Journal of Chemical Physics and Physical Chemistry, 2015, 16(1): 99–103
[28]
Andzane J, Kunakova G, Varghese J, Holmes J D, Erts D. Photoconductive properties of Bi2S3 nanowires. Journal of Applied Physics, 2015, 117(6): 064305
CrossRef Google scholar
[29]
Wang H, Zhu J J, Zhu J M, Chen H Y. Sonochemical method for the preparation of bismuth sulfide nanorods. Journal of Physical Chemistry B, 2002, 106(15): 3848–3854
CrossRef Google scholar
[30]
Wei F, Zhang J, Wang L, Zhang Z K. Solvothermal growth of single-crystal bismuth sulfide nanorods using bismuth particles as source material. Crystal Growth & Design, 2006, 6(8): 1942–1944
CrossRef Google scholar
[31]
Peng X S, Meng G W, Zhang J, Zhao L X, Wang X F, Wang Y W, Zhang L D. Electrochemical fabrication of ordered Bi2S3 nanowire arrays. Journal of Physics D, Applied Physics, 2001, 34(22): 3224–3228
CrossRef Google scholar
[32]
Zhang B, Ye X, Hou W, Zhao Y, Xie Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. Journal of Physical Chemistry B, 2006, 110(18): 8978–8985
CrossRef Pubmed Google scholar
[33]
Wang Y, Chen J, Wang P, Chen L, Chen Y B, Wu L M. Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods. Journal of Physical Chemistry C, 2009, 113(36): 16009–16014
CrossRef Google scholar
[34]
Kind H, Yan H, Messer B, Law M, Yang P. Nanowire ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14(2): 158–160
CrossRef Google scholar

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2012CB619302 and 2010CB923204), the Science and Technology Bureau of Wuhan City (No. 2014010101010006), Natural Science Foundation of Hubei Province (No. 2011CDA81), Science Foundation from Hubei Provincial Department of Education (No. D20131001), the National Natural Science Foundation of China (Grant Nos. 10990103, 51002058, 61274010 and 61405076) and the Science and Technology Project of Zhejiang Province (No. 2012C33057).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1632 KB)

Accesses

Citations

Detail

Sections
Recommended

/