Building one-dimensional Bi2S3 nanorods as enhanced photoresponding materials for photodetectors
Taotao DING, Yu TIAN, Jiangnan DAI, Changqing CHEN
Building one-dimensional Bi2S3 nanorods as enhanced photoresponding materials for photodetectors
In this paper, Bi2S3 nanorods were successfully synthesized via a facile one-pot hydrothermal method and characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Then the Bi2S3 nanorods were deposited on Au interdigital electrodes by dip-coating to fabricate photodetectors. The photoresponse properties using Bi2S3 nanorods as a representative system showed a significantly enhanced conductivity and the current-voltage (I-V) characteristic exhibited about ca. 2 orders of magnitude larger than the dark current. The response and decay time was estimated to be ~371.66 and 386 ms, respectively, indicating Bi2S3 may be an excellent candidate for high speed and high-sensitivity photoelectrical switches and light sensitive devices.
Bi2S3 / nanorods / photoresponse property / photodetector
[1] |
Chen Y C, Cao T, Chen C, Pedramrazi Z, Haberer D, de Oteyza D G, Fischer F R, Louie S G, Crommie M F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nature Nanotechnology, 2015, 10(2): 156–160
CrossRef
Pubmed
Google scholar
|
[2] |
Rao P M, Cai L, Liu C, Cho I S, Lee C H, Weisse J M, Yang P, Zheng X. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Letters, 2014, 14(2): 1099–1105
CrossRef
Pubmed
Google scholar
|
[3] |
Peng S, Li L, Wu H B, Madhavi S, Lou X W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Advanced Energy Materials, 2015, 5(2): 1401172
|
[4] |
Tan C, Qi X, Huang X, Yang J, Zheng B, An Z, Chen R, Wei J, Tang B Z, Huang W, Zhang H. Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence. Advanced Materials, 2014, 26(11): 1735–1739
CrossRef
Pubmed
Google scholar
|
[5] |
Huang X, Yu H, Chen J, Lu Z, Yazami R, Hng H H. Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration. Advanced Materials, 2014, 26(8): 1296–1303
CrossRef
Pubmed
Google scholar
|
[6] |
Giri A K, Pal P, Ananthakumar R, Jayachandran M, Mahanty S, Panda A B. 3D hierarchically assembled porous wrinkled-paper-like structure of ZnCo2O4 and Co-ZnO@C as anode materials for lithium-ion batteries. Crystal Growth & Design, 2014, 14(7): 3352–3359
CrossRef
Google scholar
|
[7] |
Cheng C, Ren W, Zhang H. 3D TiO2/SnO2 hierarchically branched nanowires on transparent FTO substrate as photoanode for efficient water splitting. Nano Energy, 2014, 5: 132–138
CrossRef
Google scholar
|
[8] |
Choy J H, Jang E S, Won J H, Chung J H, Jang D J, Kim Y W. Soft solution route to directionally grown ZnOnanorodarrays on Si wafer; room-temperature ultraviolet laser. Advanced Materials, 2003, 15(22): 1911–1914
CrossRef
Google scholar
|
[9] |
Huang H, Pan L, Lim C K, Gong H, Guo J, Tse M S, Tan O K. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. Small, 2013, 9(18): 3153–3160
CrossRef
Pubmed
Google scholar
|
[10] |
Liao J Y, Lei B X, Chen H Y, Kuang D B, Su C Y. Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy & Environmental Science, 2012, 5(2): 5750–5757
CrossRef
Google scholar
|
[11] |
Guo W, Xu C, Wang X, Wang S H, Pan C, Lin C, Wang Z L. Rectangular bunched rutile TiO2 nanorodarrays grown on carbon fiber for dye-sensitized solar cells. Journal of the American Chemical Society, 2012, 134(9): 4437–4441
CrossRef
Pubmed
Google scholar
|
[12] |
Tang Z R, Li F, Zhang Y, Fu X, Xu Y J. Composites of titanatenanotube and carbon nanotube as photocatalyst with high mineralization ratio for gas-phase degradation of volatile aromatic pollutant. Journal of Physical Chemistry C, 2011, 115(16): 7880–7886
CrossRef
Google scholar
|
[13] |
Jiang J, Li Y, Liu J, Huang X. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale, 2011, 3(1): 45–58
CrossRef
Pubmed
Google scholar
|
[14] |
Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242–246
CrossRef
Pubmed
Google scholar
|
[15] |
Martinez L, Bernechea M, de Arquer F P G, Konstantatos G. Near IR-sensitive, non-toxic, polymer/nanocrystalsolar cells employing Bi2S3 as the electron acceptor. Advanced Energy Materials, 2011, 1(6): 1029–1035
CrossRef
Google scholar
|
[16] |
Xiao G, Dong Q, Wang Y, Sui Y, Ning J, Liu Z, Tian W, Liu B, Zou G, Zou B. One-step solution synthesis of bismuth sulfide (Bi2S3) with various hierarchical architectures and their photoresponse properties. RSC Advances, 2012, 2(1): 234–240
CrossRef
Google scholar
|
[17] |
Li Y, Wei F, Ma Y, Zhang H, Gao Z, Dai L, Qin G. Selected-control hydrothermal synthesis and photoresponse properties of Bi2S3micro/nanocrystals. CryEngComm, 2013, 15(33): 6611–6616
CrossRef
Google scholar
|
[18] |
Konstantatos G, Levina L, Tang J, Sargent E H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Letters, 2008, 8(11): 4002–4006
CrossRef
Pubmed
Google scholar
|
[19] |
Yao K, Gong W W, Hu Y F, Liang X L, Chen Q, Peng L M. Individual Bi2S3 nanowire-based room-temperature H2 sensor. Journal of Physical Chemistry C, 2008, 112(23): 8721–8724
CrossRef
Google scholar
|
[20] |
Bao H, Li C M, Cui X, Gan Y, Song Q, Guo J. Synthesis of a highly ordered single-crystalline Bi2S3 nanowire array and its metal/semiconductor/metal back-to-back Schottky diode. Small, 2008, 4(8): 1125–1129
CrossRef
Pubmed
Google scholar
|
[21] |
Ma J, Liu Z, Lian J, Duan X, Kim T, Peng P, Liu X, Chen Q, Yao G, Zheng W. Ionic liquids-assisted synthesis and electrochemical properties of Bi2S3 nanostructures. CrystEngComm, 2011, 13(8): 3072–3079
CrossRef
Google scholar
|
[22] |
Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nature Materials, 2006, 5(2): 118–122
CrossRef
Pubmed
Google scholar
|
[23] |
Schricker A D, Sigman M B Jr, Korgel B A. Electrical transport, Meyer–Neldel rule and oxygen sensitivity of Bi2S3 nanowires. Nanotechnology, 2005, 16(7): S508–S513
CrossRef
Google scholar
|
[24] |
Liao X H, Wang H, Zhu J J, Chen H Y. Preparation of Bi2S3 nanorods by microwave irradiation. Materials Research Bulletin, 2001, 36(13-14): 2339–2346
CrossRef
Google scholar
|
[25] |
Tang C J, Wang G Z, Wang H Q, Zhang Y X, Li G H. Facile synthesis of Bi2S3 nanowire arrays. Materials Letters, 2008, 62(21-22): 3663–3665
CrossRef
Google scholar
|
[26] |
Tang C, Wang C, Su F, Zang C, Yang Y, Zong Z, Zhang Y. Controlled synthesis of urchin-like Bi2S3 via hydrothermal method. Solid State Sciences, 2010, 12(8): 1352–1356
CrossRef
Google scholar
|
[27] |
Lu F, Li R, Li Y, Huo N, Yang J, Li Y, Li B, Yang S, Wei Z, Li J . Improving the field-effect performance of Bi2S3 single nanowires by an asymmetric device fabrication. A European Journal of Chemical Physics and Physical Chemistry, 2015, 16(1): 99–103
|
[28] |
Andzane J, Kunakova G, Varghese J, Holmes J D, Erts D. Photoconductive properties of Bi2S3 nanowires. Journal of Applied Physics, 2015, 117(6): 064305
CrossRef
Google scholar
|
[29] |
Wang H, Zhu J J, Zhu J M, Chen H Y. Sonochemical method for the preparation of bismuth sulfide nanorods. Journal of Physical Chemistry B, 2002, 106(15): 3848–3854
CrossRef
Google scholar
|
[30] |
Wei F, Zhang J, Wang L, Zhang Z K. Solvothermal growth of single-crystal bismuth sulfide nanorods using bismuth particles as source material. Crystal Growth & Design, 2006, 6(8): 1942–1944
CrossRef
Google scholar
|
[31] |
Peng X S, Meng G W, Zhang J, Zhao L X, Wang X F, Wang Y W, Zhang L D. Electrochemical fabrication of ordered Bi2S3 nanowire arrays. Journal of Physics D, Applied Physics, 2001, 34(22): 3224–3228
CrossRef
Google scholar
|
[32] |
Zhang B, Ye X, Hou W, Zhao Y, Xie Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. Journal of Physical Chemistry B, 2006, 110(18): 8978–8985
CrossRef
Pubmed
Google scholar
|
[33] |
Wang Y, Chen J, Wang P, Chen L, Chen Y B, Wu L M. Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods. Journal of Physical Chemistry C, 2009, 113(36): 16009–16014
CrossRef
Google scholar
|
[34] |
Kind H, Yan H, Messer B, Law M, Yang P. Nanowire ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14(2): 158–160
CrossRef
Google scholar
|
/
〈 | 〉 |