Effect of excitation frequency on characteristics of mixture discharge in fast-axial-flow radio frequency-excited carbon dioxide laser

Heng ZHAO, Bo LI, Wenjin WANG, Yi HU, Youqin WANG

PDF(275 KB)
PDF(275 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (4) : 592-598. DOI: 10.1007/s12200-015-0523-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Effect of excitation frequency on characteristics of mixture discharge in fast-axial-flow radio frequency-excited carbon dioxide laser

Author information +
History +

Abstract

A one-dimensional fluid model has been used to describe the effect of radio frequency (RF) on the characteristics of carbon dioxide (CO2), nitrogen (N2) and helium (He) mixture discharge at 120 mbar in fast-axial-flow RF-excited CO2 laser. A finite difference method was applied to solve the one-dimensional fluid model. The simulation results show that the spatial distributions of electron density and current density rely strongly on the modulating driven frequency. When the excitation frequency changes from 5 to 45 MHz, the plasma discharge is always in α mode. Moreover, as the excitation frequency increasing, the higher densities of CO2V001 and N2*Vib can be obtained, which is important to get higher excitation efficiency for the upper laser level.

Keywords

plasma / numerical simulation / CO2/He/N2 mixture discharges / one-dimensional fluid model

Cite this article

Download citation ▾
Heng ZHAO, Bo LI, Wenjin WANG, Yi HU, Youqin WANG. Effect of excitation frequency on characteristics of mixture discharge in fast-axial-flow radio frequency-excited carbon dioxide laser. Front. Optoelectron., 2016, 9(4): 592‒598 https://doi.org/10.1007/s12200-015-0523-x

References

[1]
Sublemontier O, Lacour F, Leconte Y, Herlin-Boime N, Reynaud C. CO2 laser-driven pyrolysis synthesis of silicon nanocrystals and applications. Journal of Alloys and Compounds, 2009, 483(1–2): 499–502
[2]
Comparat D. A study of molecular cooling via Sisyphus processes. Physical Review A, 2014, 89(4): 043410
[3]
Niziev V G, Grishaev R V, Panchenko V Y. Multipass modes in an open resonator. Laser Physics, 2015, 25(2): 023001
CrossRef Google scholar
[4]
Zhao J, Li B, Zhao H, Wang W, Hu Y, Liu S, Wang Y. Generation of azimuthally polarized beams in fast axial flow CO2 laser with hybrid circular subwavelength grating mirror. Applied Optics, 2014, 53(17): 3706–3711
CrossRef Pubmed Google scholar
[5]
Maiorov S A, Kodanova S K, Dosbolayev M K, Ramazanov T S, Golyatina R I, Bastykova N K, Utegenov A U. The role of gas composition in plasma-dust structures in RF discharge. Physics of Plasmas, 2015, 22(3): 033705
CrossRef Google scholar
[6]
Voloshin D, Kovalev A, Mankelevich, Proshina O, Rakhimova T, Vasilieva A. Evaluation of plasma density in RF CCP discharges from ion current to Langmuir probe: experiment and numerical simulation. Evaluation Physical Journal D, 2015, 69(23): 1–9
CrossRef Google scholar
[7]
Chen F F, Evans J D, Zawalski W. Calibration of Langmuir probes against microwaves and plasma oscillation probes. Plasma Sources Science & Technology, 2012, 21(5): 055002
CrossRef Google scholar
[8]
Turner M M, Derzsi A, Donkó Z, Eremin D, Kelly S J, Lafleur T, Mussenbrock T. Simulation benchmarks for low-pressure plasmas: capacitive discharges. Physics of Plasmas, 2013, 20(1): 013507
CrossRef Google scholar
[9]
Wester R, Seiwert S. Numerical modelling of RF excited CO2 laser discharges. Journal of Physics D, Applied Physics, 1991, 24(8): 1371–1375
CrossRef Google scholar
[10]
Wang Y, Chen Q, Xu Q Y. Numerical modeling of RF-excited plasma in coaxial CO2 lasers. Optics Communications, 1999, 160(1–3): 86–91
CrossRef Google scholar
[11]
Zhang X, Wang X, Li G, He F, Jiao J, Lu Y. Theoretical research of α-RF discharge in slab oxygen iodine lasers. Proceedings of High-Power Lasers and Applications IV, 2007, 6823: 68230Q
[12]
He D, Hall D R. Frequency dependence in RF discharge excited waveguide CO2 lasers. IEEE Journal of Quantum Electronics, 1984, 20(5): 509–514
CrossRef Google scholar
[13]
Vidaud P, He D, Hall D R. High efficiency RF excited CO2 laser. Optics Communications, 1985, 56(3): 185–190
CrossRef Google scholar
[14]
Vidaud P, Hall D R. Effect of xenon on the electron temperatures of RF discharge CO2 laser gas mixtures. Journal of Applied Physics, 1985, 57(5): 1757–1758
CrossRef Google scholar
[15]
Lymberopoulos D P, Economou D J. Fluid simulations of glow discharges: effect of metastable atoms in argon. Journal of Applied Physics, 1993, 73(8): 3668–3679
CrossRef Google scholar
[16]
Liu X M, Song Y H, Wang Y N. Driving frequency effects on the mode transition in capacitively coupled argon discharges. Chinese Physics B, 2011, 20(6): 065205
CrossRef Google scholar
[17]
Schroder K. Theoretical modelling of RF-excited laser plasmas. Proceedings of the Society for Photo-Instrumentation Engineers, 1989, 1031: 90–97
CrossRef Google scholar
[18]
Shang W, Wang D, Zhang Y. Radio frequency atmospheric pressure glow discharge in α and γ modes between two coaxial electrodes. Physics of Plasmas, 2008, 15(9): 093003
[19]
Raizer Y P, Shneider M N, Yatsenko N A. Radio-Frequency Capacitive Discharges. Florida: CRC, 1995, 247–258
[20]
Lowke J J, Phelps A V, Irwin B W. Predicted electron transport coefficients and operating characteristics of CO2-N2-He laser mixtures. Journal of Applied Physics, 1973, 44(10): 4664–4671
CrossRef Google scholar
[21]
Schulz G J. Vibrational excitation of N2, CO, and H2 by electron impact. Physical Review, 1964, 135(4A): A988–A994
CrossRef Google scholar
[22]
Newman L A, Detemple T A. Electron transport parameters and excitation rates in N2. Journal of Applied Physics, 1976, 47(5): 1912–1915
CrossRef Google scholar
[23]
Cosby P C. Electron-impact dissociation of nitrogen. Journal of Chemical Physics, 1993, 98(12): 9544–9553
CrossRef Google scholar
[24]
Surendra M. Radiofrequency discharge benchmark model comparison. Plasma Sources Science & Technology, 1995, 4(1): 56–73
CrossRef Google scholar
[25]
Bhagat M S, Biswas A K, Rana L B, Kukreja L M. Impedance matching in RF excited fast axial flow CO2 laser: the role of the capacitance due to laser head. Optics & Laser Technology, 2012, 44(7): 2217–2222
CrossRef Google scholar
[26]
He D, Baker C J, Hall D R. Discharge striations in RF excited waveguide lasers. Journal of Applied Physics, 1984, 55(11): 4120–4122
CrossRef Google scholar
[27]
Yang X, Moravej M, Nowling G R, Babayan S E, Panelon J, Chang J P, Hicks R F. Comparison of an atmospheric pressure, radio-frequency discharge operating in the α and γ modes. Plasma Sources Science & Technology, 2005, 14(2): 314–320
CrossRef Google scholar
[28]
Moon S Y, Rhee J K, Kim D B, Choe W. α, γ, and normal, abnormal glow discharge modes in radio-frequency capacitively coupled discharges at atmospheric pressure. Physics of Plasmas, 2006, 13(3): 033502
[29]
Liu D, Iza F, Kong M G. Evolution of the light emission profile in radio-frequency atmospheric pressure glow discharges. IEEE Transactions on Plasma Science, 2008, 36(4): 952–953
CrossRef Google scholar
[30]
Vitruck P P, Baker H J, Hall D R. The characteristics and stability of high power transverse radio frequency discharges for waveguide CO2 slab laser excitation. Journal of Physics D, Applied Physics, 1992, 25: 1767
[31]
Zhang Y, Cui S. Frequency effects on the electron density and α–γ mode transition in atmospheric radio frequency discharges. Physics of Plasmas, 2011, 18(8): 083509
CrossRef Google scholar

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(275 KB)

Accesses

Citations

Detail

Sections
Recommended

/