Error compensation for three-dimensional profile measurement system

Xu YE, Haobo CHENG, Zhichao DONG, Hon-Yuen TAM

PDF(1814 KB)
PDF(1814 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (4) : 402-412. DOI: 10.1007/s12200-015-0497-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Error compensation for three-dimensional profile measurement system

Author information +
History +

Abstract

Three-dimensional (3D) profile measurement is an indispensable process for assisting the manufacture of various optic, especially aspheric surfaces. This work presents the measurement error calibration of a 3D profile measurement system, namely PMI700. Measurement errors induced by measuring tool radius, alignment error and the temperature variation were analyzed through geometry analysis and simulation. A quantitative method for the compensation of tool radius and an alignment error compensation model based on the least square method were proposed to reduce the measurement error. To verify the feasibility of PMI700, a plane and a non-uniform hyperboloidal mirror were measured by PMI700 and interferometer, respectively. The data provided by two systems were high coincident. The direct subtractions of results from two systems indicate RMS deviations for both segments were less than 0.2λ.

Keywords

aspheric surface / three-dimensional (3D) profile measurement / alignment error / error compensation

Cite this article

Download citation ▾
Xu YE, Haobo CHENG, Zhichao DONG, Hon-Yuen TAM. Error compensation for three-dimensional profile measurement system. Front. Optoelectron., 2015, 8(4): 402‒412 https://doi.org/10.1007/s12200-015-0497-8

References

[1]
Zamkotsian F, Dohlen K, Lanzoni P, Mazzanti S P, Michel M L, Buat V, Burgarella D. Knife-edge test for characterization of sub-nanometer deformations in micro-optical surface. Proceedings of SPIE, Optical Manufacturing and Testing III, 1999, 3782: 328–336 
CrossRef Google scholar
[2]
Hernández-Gómez G, Malacara-Hernández Z, Malacara-Hernández D. Hartmann tests to measure the spherical and cylindrical curvatures and the axis orientation of astigmatic lenses or optical surfaces. Applied Optics, 2014, 53(6): 1191–1199
CrossRef Google scholar
[3]
Dickson L D. Ronchi ruling method for measuring Gaussian beam diameter. Optical Engineering (Redondo Beach, Calif.), 1979, 18(1): 180170
[4]
Zhou P, Burge J H. Optimal design of computer-generated holograms to minimize sensitivity to fabrication errors. Optics Express, 2007, 15(23): 15410–15417
CrossRef Pubmed Google scholar
[5]
Takasaki H. Moiré topography. Applied Optics, 1970, 9(6): 1467–1472
CrossRef Pubmed Google scholar
[6]
Chen S, Li S, Dai Y, Zheng Z. Testing of large optical surfaces with subaperture stitching. Applied Optics, 2007, 46(17): 3504–3509
CrossRef Pubmed Google scholar
[7]
Kühn J, Colomb T, Montfort F, Charrière F, Emery Y, Cuche E, Marquet P, Depeursinge C. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Optics Express, 2007, 15(12): 7231–7242
CrossRef Pubmed Google scholar
[8]
Barrientos B, Martínez-CelorioR A, López L M, Dirckx J J J, Cywiak M. Measurement of out-of-plane deformation by combination of speckle shearing interferometry. Optik (Stuttgart), 2004, 115(6): 248–252
CrossRef Google scholar
[9]
Goodwin E P, Wyant J C. Field Guide to Interferometric Optical Testing. Bellingham, WA: SPIE Press, 2006
[10]
Breidenthal R S. Measurement of large optical surfaces for fabrication using a non-optical technique. Proceedings of SPIE, Large Optics II, 1992, 1618: 97–103
[11]
Comley P, Morantz P, Shore P, Tonnellier X. Grinding metre scale mirror segments for the E-ELT ground based telescope. CIRP Annals-Manufacturing Technology, 2011, 60(1): 379–382
CrossRef Google scholar
[12]
Gray C, Baker I, Davies G. Fast manufacturing of E-ELT mirror segments using CNC polishing. Proceedings of SPIE, Optical Manufacturing and Testing X, 2013, 8838: 88380K
[13]
Su P, Oh C J, Parks R E, Burge J H. Swing arm optical CMM for aspherics. Proceedings of SPIE, Optical Manufacturing and Testing VIII, 2009, 7426: 74260J
[14]
Su P, Wang Y H, Oh C J, Parks R E, Burge J H. Swing arm optical CMM: self-calibration with dual probe shear test. Proceedings of SPIE, Optical Manufacturing and Testing IX, 2011, 8126: 81260W
[15]
Jing H, King C, Walker D. Simulation and validation of a prototype swing arm profilometer for measuring extremely large telescope mirror-segments. Optics Express, 2010, 18(3): 2036–2048
CrossRef Pubmed Google scholar
[16]
Jing H, King C, Walker D. Measurement of influence function using swing arm profilometer and laser tracker. Optics Express, 2010, 18(5): 5271–5281
CrossRef Pubmed Google scholar
[17]
Chen F J, Yin S H, Huang H, Ohmori H, Wang Y, Fan Y F, Zhu Y J. Profile error compensation in ultra-precision grinding of aspheric sur faces with on-machine measurement. International Journal of Machine Tools & Manufacture, 2010, 50(5): 480–486
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61128012, 61061160503 and 61222506), the Key Laboratory of Photoelectronic Imaging Technology and System, BIT, Ministry of Education of China (No. 2013OEIOF06).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1814 KB)

Accesses

Citations

Detail

Sections
Recommended

/