Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range

Jing DAI, Minming ZHANG, Feiya ZHOU, Deming LIU

PDF(643 KB)
PDF(643 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (1) : 112-120. DOI: 10.1007/s12200-015-0483-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range

Author information +
History +

Abstract

A highly efficient tunable optical filter of liquid crystal (LC) optical micro-ring resonator (MRR) was proposed. The 4-μm-radius ring consists of a silicon-on-insulator (SOI) asymmetric bent slot waveguide with a LC cladding. The geometry of the slot waveguide resulted in the strong electro-optic effect of the LC, and therefore induced an increase in effective refractive index by 0.0720 for the quasi-TE mode light in the slot-waveguide. The ultra-wide tuning range (56.0 nm) and large free spectral range (FSR) (~28.0 nm) of the optical filters enabled wavelength reconfigurable multiplexing devices with a drive voltage of only 5 V. The influences of parameters, such as the slot width, total width of Si rails and slot shift on the device’s performance, were analyzed and the optimal design was given. Moreover, the influence of fabrication tolerances and the loss of device were both investigated. Compared with state-of-the-art tunable MRRs, the proposed electrically tunable micro-ring resonator owns the excellent features of wider tuning ranges, larger FSRs and ultralow voltages.

Keywords

integrated optics devices / liquid crystals / micro-ring resonator / slot waveguide / wavelength tuning

Cite this article

Download citation ▾
Jing DAI, Minming ZHANG, Feiya ZHOU, Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range. Front. Optoelectron., 2016, 9(1): 112‒120 https://doi.org/10.1007/s12200-015-0483-1

References

[1]
Selvaraja S K, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. Journal of Lightwave Technology, 2009, 27(18): 4076–4083
CrossRef Google scholar
[2]
Dumon P, Bogaerts W, Wiaux V, Wouters J, Beckx S, Van Campenhout J, Taillaert D, Luysaert B, Bienstman P, Van Thourhout D, Baets R. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technology Letters, 2004, 16(5): 1328–1330
CrossRef Google scholar
[3]
Basch E B, Egorov R, Gringeri S, Elby S. Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(4): 615–626
CrossRef Google scholar
[4]
Ng H, Wang M R, Li D, Wang X, Martinez J, Panepucci R R, Pathak K. 1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate. IEEE Photonics Technology Letters, 2007, 19(9): 704–706
CrossRef Google scholar
[5]
Yalcin A, Popat K C, Aldridge J C, Desai T A, Hryniewicz J, Chbouki N, Little B E, King O, Van V, Chu S, Gill D, Anthes-Washburn M, Unlu M S, Goldberg B B. Optical sensing of biomolecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 148–155
CrossRef Google scholar
[6]
Dong P, Qian W, Liang H, Shafiiha R, Feng N, Feng D, Zheng X, Krishnamoorthy A V, Asghari M. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Optics Express, 2010, 18(10): 9852–9858
CrossRef Pubmed Google scholar
[7]
Guarino A, Poberaj G, Rezzonico D, Degl’innocenti R, Günter P. Electro-optically tunable microring resonators in lithium niobate. Nature Photonics, 2007, 1(7): 407–410
CrossRef Google scholar
[8]
Liu A, Liao L, Rubin D, Nguyen H, Ciftcioglu B, Chetrit Y, Izhaky N, Paniccia M. High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 2007, 15(2): 660–668
CrossRef Pubmed Google scholar
[9]
Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham J E, Krishnamoorthy A V, Asghari M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express, 2010, 18(19): 20298–20304
CrossRef Pubmed Google scholar
[10]
Nishihara H, Haruna M, Suhara T. Optical Integrated Circuit. New York: McGraw-Hill1985, 36–44
[11]
Soref R A, Bennett B R. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 1987, 23(1): 123–129
CrossRef Google scholar
[12]
Maune B, Lawson R, Gunn C, Scherer A, Dalton L. Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers. Applied Physics Letters, 2003, 83(23): 4689–4691
CrossRef Google scholar
[13]
Falco A D, Assanto G. Tunable wavelength-selective add–drop in liquid crystals on a silicon microresonator. Optics Communications, 2007, 279(1): 210–213
CrossRef Google scholar
[14]
De Cort W, Beeckman J, James R, Fernandez F A, Baets R, Neyts K. Tuning silicon-on-insulator ring resonators with in-plane switching liquid crystals. Journal of the Optical Society of America B, Optical Physics, 2011, 28(1): 79–85
CrossRef Google scholar
[15]
De Cort W, Beeckman J, Claes T, Neyts K, Baets R. Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Optics Letters, 2011, 36(19): 3876–3878
CrossRef Pubmed Google scholar
[16]
Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
CrossRef Pubmed Google scholar
[17]
Anderson P A, Schmidt B S, Lipson M. High confinement in silicon slot waveguides with sharp bends. Optics Express, 2006, 14(20): 9197–9202
CrossRef Pubmed Google scholar
[18]
Kargar A, Chao C. Design and optimization of waveguide sensitivity in slot microring sensors. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(4): 596–603
CrossRef Pubmed Google scholar
[19]
Pfeifle J, Alloatti L, Freude W, Leuthold J, Koos C. Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Optics Express, 2012, 20(14): 15359–15376
CrossRef Pubmed Google scholar
[20]
Barrios C A, Lipson M. Electrically driven silicon resonant light emitting device based on slot-waveguide. Optics Express, 2005, 13(25): 10092–10101
CrossRef Pubmed Google scholar
[21]
Gould M, Baehr-Jones T, Ding R, Huang S, Luo J, Jen A K, Fedeli J M, Fournier M, Hochberg M. Silicon-polymer hybrid slot waveguide ring-resonator modulator. Optics Express, 2011, 19(5): 3952–3961
CrossRef Pubmed Google scholar
[22]
Desmet H, Neyts K, Baets R. Liquid crystal orientation on patterns etched in silicon on insulator. Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits, 2006, 6183: 61831Z
[23]
Ge Z, Wu T X, Lu R, Zhu X, Hong Q, Wu S. Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method. Journal of Display Technology, 2005, 1(2): 194–206
CrossRef Google scholar
[24]
Fallahkhair A B, Li K S, Murphy T E. Vector finite difference modesolver for anisotropic dielectric waveguides. Journal of Lightwave Technology, 2008, 26(11): 1423–1431
CrossRef Google scholar
[25]
Dell’Olio F, Passaro V M. Optical sensing by optimized silicon slot waveguides. Optics Express, 2007, 15(8): 4977–4993
CrossRef Pubmed Google scholar
[26]
Donisi D, Bellini B, Beccherelli R, Asquini R, Gilardi G, Trotta M, d’ Alessandro A. A switchable liquid-crystal optical channel waveguide on silicon. IEEE Journal of Quantum Electronics, 2010, 46(5): 762–768
CrossRef Google scholar

Acknowledgements

The authors would like to thank Shuchang Yao and Yong Mei for useful discussion. This work was supported by the National High Technology Research and Development Program of China (No. SS2015AA010104), the Major Project of Science and Technology Innovation Program of Hubei Province of China (No. 2014AAA006), and the National Natural Science Foundation of China (Grant No. 61107051).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(643 KB)

Accesses

Citations

Detail

Sections
Recommended

/