Laser-based micro/nanofabrication in one, two and three dimensions
Wei XIONG, Yunshen ZHOU, Wenjia HOU, Lijia JIANG, Masoud MAHJOURI-SAMANI, Jongbok PARK, Xiangnan HE, Yang GAO, Lisha FAN, Tommaso BALDACCHINI, Jean-Francois SILVAIN, Yongfeng LU
Laser-based micro/nanofabrication in one, two and three dimensions
Advanced micro/nanofabrication of functional materials and structures with various dimensions represents a key research topic in modern nanoscience and technology and becomes critically important for numerous emerging technologies such as nanoelectronics, nanophotonics and micro/nanoelectromechanical systems. This review systematically explores the non-conventional material processing approaches in fabricating nanomaterials and micro/nanostructures of various dimensions which are challenging to be fabricated via conventional approaches. Research efforts are focused on laser-based techniques for the growth and fabrication of one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) nanomaterials and micro/nanostructures. The following research topics are covered, including: 1) laser-assisted chemical vapor deposition (CVD) for highly efficient growth and integration of 1D nanomaterial of carbon nanotubes (CNTs), 2) laser direct writing (LDW) of graphene ribbons under ambient conditions, and 3) LDW of 3D micro/nanostructures via additive and subtractive processes. Comparing with the conventional fabrication methods, the laser-based methods exhibit several unique advantages in the micro/nanofabrication of advanced functional materials and structures. For the 1D CNT growth, the laser-assisted CVD process can realize both rapid material synthesis and tight control of growth location and orientation of CNTs due to the highly intense energy delivery and laser-induced optical near-field effects. For the 2D graphene synthesis and patterning, room-temperature and open-air fabrication of large-scale graphene patterns on dielectric surface has been successfully realized by a LDW process. For the 3D micro/nanofabrication, the combination of additive two-photon polymerization (TPP) and subtractive multi-photon ablation (MPA) processes enables the fabrication of arbitrary complex 3D micro/nanostructures which are challenging for conventional fabrication methods. Considering the numerous unique advantages of laser-based techniques, the laser-based micro/nanofabrication is expected to play a more and more important role in the fabrication of advanced functional micro/nano-devices.
micro/nanofabrication / laser material interaction / carbon nanotubes (CNTs) / graphene / two-photon polymerization (TPP) / multi-photon ablation (MPA)
[1] |
Wiederrecht G. Handbook of Nanofabrication. Boston, MA: Elsevier, 2009
|
[2] |
Quake S R, Scherer A. From micro- to nanofabrication with soft materials. Science, 2000, 290(5496): 1536–1540
CrossRef
Pubmed
Google scholar
|
[3] |
Henzie J, Lee J, Lee M H, Hasan W, Odom T W. Nanofabrication of plasmonic structures. Annual Review of Physical Chemistry, 2009, 60(1): 147–165
CrossRef
Pubmed
Google scholar
|
[4] |
Zhang G Q, van Roosmalen A J. The changing landscape of micro/nanoelectronics. In: More than Moore: Creating High Value Micro/Nanoelectronics Systems. New York: Springer US, 2009, 1–31
|
[5] |
Zhang G Q, VanRoosmalen A J. More than Moore: Creating High Value Micro/Nanoelectronics Systems. New York: Springer US, 2009
|
[6] |
Liang J, Chen Y, Xu Y, Liu Z, Zhang L, Zhao X, Zhang X, Tian J, Huang Y, Ma Y, Li F. Toward all-carbon electronics: fabrication of graphene-based flexible electronic circuits and memory cards using maskless laser direct writing. ACS Applied Materials & Interfaces, 2010, 2(11): 3310–3317
CrossRef
Pubmed
Google scholar
|
[7] |
Meixner A J. Nanophotonics, nano-optics and nanospectroscopy. Beilstein Journal of Nanotechnology, 2011, 2: 499–500
|
[8] |
Vasa P, Ropers C, Pomraenke R, Lienau C. Ultra-fast nano-optics. Laser & Photonics Reviews. 2009, 3(6): 483–507
|
[9] |
Stockman M. Light-emitting devices: from nano-optics to street lights. Nature Materials, 2004, 3(7): 423–424
CrossRef
Pubmed
Google scholar
|
[10] |
Koch S W, Knorr A. Applied physics. Optics in the nano-world. Science, 2001, 293(5538): 2217–2218
CrossRef
Pubmed
Google scholar
|
[11] |
Fara L, Yamaguchi M. Advanced Solar Cell Materials, Technology, Modeling and Simulation. Hershey, PA: Engineering Science Reference, 2013
|
[12] |
Rau U, Abou-Ras D, Kirchartz T. Advanced Characterization Techniques for Thin Film Solar Cells. Weinheim, Germany: Wiley-VCH, 2011
|
[13] |
Zaghloul U, Papaioannou G, Bhushan B, Coccetti F, Pons P, Plana R. On the reliability of electrostatic NEMS/MEMS devices: review of present knowledge on the dielectric charging and stiction failure mechanisms and novel characterization methodologies. Microelectronics and Reliability, 2011, 51(9−11): 1810–1818
CrossRef
Google scholar
|
[14] |
Roncaglia A, Ferri M. Thermoelectric materials in MEMS and NEMS: a review. Science of Advanced Materials, 2011, 3(3): 401–419
|
[15] |
Kumar S, Cola B A, Jackson R, Graham S. A review of carbon nanotube ensembles as flexible electronics and advanced packaging materials. Journal of Electronic Packaging, 2011, 133(2): 020906
CrossRef
Google scholar
|
[16] |
Palacios T. Graphene electronics: thinking outside the silicon box. Nature Nanotechnology, 2011, 6(8): 464–465
CrossRef
Pubmed
Google scholar
|
[17] |
Sinitskii A, Tour J M. Graphene electronics, unzipped. IEEE Spectrum, 2010, 47(11): 28–33
CrossRef
Google scholar
|
[18] |
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
CrossRef
Pubmed
Google scholar
|
[19] |
Danilevičius P, Rekstyte S, Balciunas E, Kraniauskas A, Širmenis R, Baltriukienė D, Bukelskienė V, Gadonas R, Sirvydis V, Piskarskas A, Malinauskas M. Laser 3D micro/nanofabrication of polymers for tissue engineering applications. Optics & Laser Technology, 2013, 45: 518–524
CrossRef
Google scholar
|
[20] |
Zhang Y L, Chen Q D, Xia H, Sun H B. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448
CrossRef
Google scholar
|
[21] |
Porro S, Musso S, Giorcelli M, Chiodoni A, Tagliaferro A. Optimization of a thermal-CVD system for carbon nanotube growth. Physica E, Low-Dimensional Systems and Nanostructures, 2007, 37(1−2): 16–20
CrossRef
Google scholar
|
[22] |
Shi F, Wang Y, Xue C. Synthesis of GaN nanowires by CVD method: effect of reaction temperature. Journal of Experimental Nanoscience, 2011, 6(3): 238–247
CrossRef
Google scholar
|
[23] |
Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5(8): 574–578
CrossRef
Pubmed
Google scholar
|
[24] |
Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30–35
CrossRef
Pubmed
Google scholar
|
[25] |
Hong J, Jang J. Micropatterning of graphene sheets: recent advances in techniques and applications. Journal of Materials Chemistry, 2012, 22(17): 8179–8191
CrossRef
Google scholar
|
[26] |
Xiong W, Zhou Y S, He X N, Gao Y, Mahjouri-Samani M, Jiang L, Baldacchini T, Lu Y F. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Science & Applications, 2012, 1(4): e6
|
[27] |
Shi J, Lu Y F, Wang H, Yi K J, Lin Y S, Zhang R, Liou S H. Synthesis of suspended carbon nanotubes on silicon inverse-opal structures by laser-assisted chemical vapour deposition. Nanotechnology, 2006, 17(15): 3822–3826
CrossRef
Google scholar
|
[28] |
Xie Z, Zhou Y, He X, Gao Y, Park J, Ling H, Jiang L, Lu Y. Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling. Crystal Growth & Design, 2010, 10(4): 1762–1766
CrossRef
Google scholar
|
[29] |
Park J B, Jeong M S, Jeong S H. Direct writing of carbon nanotube patterns by laser-induced chemical vapor deposition on a transparent substrate. Applied Surface Science, 2009, 255(8): 4526–4530
CrossRef
Google scholar
|
[30] |
Xiong W, Zhou Y S, Mahjouri-Samani M, Yang W Q, Yi K J, He X N, Liou S H, Lu Y F. Self-aligned growth of single-walled carbon nanotubes using optical near-field effects. Nanotechnology, 2009, 20(2): 025601
CrossRef
Pubmed
Google scholar
|
[31] |
Odom T W, Huang J, Kim P, Lieber C M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391(6662): 62–64
CrossRef
Google scholar
|
[32] |
Burghard M, Klauk H, Kern K. Carbon-based field-effect transistors for nanoelectronics. Advanced Materials, 2009, 21(25−26): 2586–2600
CrossRef
Google scholar
|
[33] |
Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science, 2001, 294(5545): 1317–1320
CrossRef
Pubmed
Google scholar
|
[34] |
Dai H. Carbon nanotubes: opportunities and challenges. Surface Science, 2002, 500(1−3): 218–241
CrossRef
Google scholar
|
[35] |
Avouris P, Chen J. Nanotube electronics and optoelectronics. Materials Today, 2006, 9(10): 46–54
CrossRef
Google scholar
|
[36] |
Kong J, Soh H T, Cassell A M, Quate C F, Dai H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998, 395(6705): 878–881
CrossRef
Google scholar
|
[37] |
Li Y, Mann D, Rolandi M, Kim W, Ural A, Hung S, Javey A, Cao J, Wang D, Yenilmez E, Wang Q, Gibbons J F, Nishi Y, Dai H. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Letters, 2004, 4(2): 317–321
CrossRef
Google scholar
|
[38] |
Shi J, Lu Y F, Yi K J, Lin Y S, Liou S H, Hou J B, Wang X W. Direct synthesis of single-walled carbon nanotubes bridging metal electrodes by laser-assisted chemical vapor deposition. Applied Physics Letters, 2006, 89(8): 083105
CrossRef
Google scholar
|
[39] |
Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274): 483–487
CrossRef
Pubmed
Google scholar
|
[40] |
Bethune D S, Kiang C H, de Vries M S, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature, 1993, 363(6430): 605–607
CrossRef
Google scholar
|
[41] |
Kim P, Shi L, Majumdar A, McEuen P L. Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physica B, Condensed Matter, 2002, 323(1−4): 67–70
CrossRef
Google scholar
|
[42] |
Ural A, Li Y, Dai H. Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Applied Physics Letters, 2002, 81(18): 3464–3466
CrossRef
Google scholar
|
[43] |
Falvo M R, Clary G J, Taylor R M 2nd, Chi V, Brooks F P Jr, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389(6651): 582–584
CrossRef
Pubmed
Google scholar
|
[44] |
Vijayaraghavan A, Blatt S, Weissenberger D, Oron-Carl M, Hennrich F, Gerthsen D, Hahn H, Krupke R. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Letters, 2007, 7(6): 1556–1560
CrossRef
Pubmed
Google scholar
|
[45] |
Rao S G, Huang L, Setyawan W, Hong S. Nanotube electronics: large-scale assembly of carbon nanotubes. Nature, 2003, 425(6953): 36–37
CrossRef
Pubmed
Google scholar
|
[46] |
Zhang Y, Chang A, Cao J, Wang Q, Kim W, Li Y, Morris N, Yenilmez E, Kong J, Dai H. Electric-field-directed growth of aligned single-walled carbon nanotubes. Applied Physics Letters, 2001, 79(19): 3155–3157
CrossRef
Google scholar
|
[47] |
Huang S, Cai X, Liu J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. Journal of the American Chemical Society, 2003, 125(19): 5636–5637
CrossRef
Pubmed
Google scholar
|
[48] |
Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386(6624): 474–477
CrossRef
Google scholar
|
[49] |
Xi N, Szu H, Buss J, Mack I. Carbon nanotube based spectrum infrared detectors. In: Proceedings of SPIE 5987, Electro-Optical and Infrared Systems: Technology and Applications II. 2005, 59870M
|
[50] |
Bockrath M, Cobden D H, McEuen P L, Chopra N G, Zettl A, Thess A, Smalley R E. Single-electron transport in ropes of carbon nanotubes. Science, 1997, 275(5308): 1922–1925
CrossRef
Pubmed
Google scholar
|
[51] |
Maehashi K, Ohno Y, Inoue K, Matsumoto K. Laser-resonance chirality selection in single-walled carbon nanotubes. AIP Conference Proceedings, 2005, 772(1): 1023–1024
|
[52] |
Xiong W, Gao Y, Mahjouri-Samani M, Zhou Y S, Mitchell M, J BPark, Lu Y F. Laser assisted fabrication for controlled single-walled carbon nanotube synthesis and processing. Chinese Journal of Lasers, 2009, 36(12): 3125–3132
CrossRef
Google scholar
|
[53] |
Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S. Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chemical Physics Letters, 2003, 376(1−2): 174–180
CrossRef
Google scholar
|
[54] |
Novotny L, Bian R X, Xie X S. Theory of nanometric optical tweezers. Physical Review Letters, 1997, 79(4): 645–648
CrossRef
Google scholar
|
[55] |
Downes A, Salter D, Elfick A. Heating effects in tip-enhanced optical microscopy. Optics Express, 2006, 14(12): 5216–5222
CrossRef
Pubmed
Google scholar
|
[56] |
Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu Y T, Liu Z. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nature Materials, 2007, 6(4): 283–286
CrossRef
Pubmed
Google scholar
|
[57] |
Zhou Y S, Xiong W, Gao Y, Mahjouri-Samani M, Mitchell M, Jiang L, Lu Y F. Towards carbon-nanotube integrated devices: optically controlled parallel integration of single-walled carbon nanotubes. Nanotechnology, 2010, 21(31): 315601
CrossRef
Pubmed
Google scholar
|
[58] |
Xiong W, Zhou Y S, Mahjouri-Samani M, Yang W Q, Yi K J, He X N, Lu Y F. Controlled-growth of single-walled carbon nanotubes using optical near-field effects. In: Proceedings of SPIE 7202, Laser-based Micro- and Nanopackaging and Assembly III. 2009, 720209
CrossRef
Google scholar
|
[59] |
Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari A C, Blackburn A M, Wang K Y, Robertson J. Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Letters, 2006, 6(6): 1107–1112
CrossRef
Pubmed
Google scholar
|
[60] |
van Dorp W F, Hagen C W. A critical literature review of focused electron beam induced deposition. Journal of Applied Physics, 2008, 104(8): 081301
CrossRef
Google scholar
|
[61] |
Brintlinger T, Chen Y, Dürkop T, Cobas E, Fuhrer M S, Barry J D, Melngailis J. Rapid imaging of nanotubes on insulating substrates. Applied Physics Letters, 2002, 81(13): 2454–2456
CrossRef
Google scholar
|
[62] |
Zhou Y S, Yi K J, Mahjouri-Samani M, Xiong W, Lu Y F, Liou S H. Image contrast enhancement in field-emission scanning electron microscopy of single-walled carbon nanotubes. Applied Surface Science, 2009, 255(7): 4341–4346
CrossRef
Google scholar
|
[63] |
Homma Y, Suzuki S, Kobayashi Y, Nagase M, Takagi D. Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy. Applied Physics Letters, 2004, 84(10): 1750–1752
CrossRef
Google scholar
|
[64] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200
CrossRef
Pubmed
Google scholar
|
[65] |
Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379
CrossRef
Pubmed
Google scholar
|
[66] |
Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388
CrossRef
Pubmed
Google scholar
|
[67] |
Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L. Two-dimensional phonon transport in supported graphene. Science, 2010, 328(5975): 213–216
CrossRef
Pubmed
Google scholar
|
[68] |
Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332(6035): 1291–1294
CrossRef
Pubmed
Google scholar
|
[69] |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308
CrossRef
Pubmed
Google scholar
|
[70] |
Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D. Graphene-on-silicon Schottky junction solar cells. Advanced materials (Deerfield Beach, Fla.), 2010, 22(25): 2743–2748
|
[71] |
Park H, Rowehl J A, Kim K K, Bulovic V, Kong J. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21(50): 505204
CrossRef
Pubmed
Google scholar
|
[72] |
Feng L, Wu L, Wang J, Ren J, Miyoshi D, Sugimoto N, Qu X. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Advanced materials (Deerfield Beach, Fla.), 2012, 24(1): 125–131
|
[73] |
Myung S, Solanki A, Kim C, Park J, Kim K S, Lee K. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Advanced materials (Deerfield Beach, Fla.), 2011, 23(19): 2221–2225
|
[74] |
Hwang J O, Park J S, Choi D S, Kim J Y, Lee S H, Lee K E, Kim Y H, Song M H, Yoo S, Kim S O. Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes. ACS Nano, 2012, 6(1): 159–167
CrossRef
Pubmed
Google scholar
|
[75] |
Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced materials (Deerfield Beach, Fla.), 2011, 23(13): 1482–1513
|
[76] |
Kalita G, Matsushima M, Uchida H, Wakita K, Umeno M. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. Journal of Materials Chemistry, 2010, 20(43): 9713–9717
CrossRef
Google scholar
|
[77] |
Xiong W, Zhou Y S, Jiang L J, Sarkar A, Mahjouri-Samani M, Xie Z Q, Gao Y, Ianno N J, Jiang L, Lu Y F. Single-step formation of graphene on dielectric surfaces. Advanced materials (Deerfield Beach, Fla.), 2013, 25(4): 630–634
|
[78] |
Wei Z, Wang D, Kim S, Kim S Y, Hu Y, Yakes M K, Laracuente A R, Dai Z, Marder S R, Berger C, King W P, de Heer W A, Sheehan P E, Riedo E. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science, 2010, 328(5984): 1373–1376
CrossRef
Pubmed
Google scholar
|
[79] |
Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H, Xiao F. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20
CrossRef
Google scholar
|
[80] |
Zhou Y, Bao Q, Varghese B, Tang L A L, Tan C K, Sow C, Loh K P. Microstructuring of graphene oxide nanosheets using direct laser writing. Advanced materials (Deerfield Beach, Fla.), 2010, 22(1): 67–71
|
[81] |
Park J B, Xiong W, Gao Y, Qian M, Xie Z Q, Mitchell M, Zhou Y S, Han G H, Jiang L, Lu Y F. Fast growth of graphene patterns by laser direct writing. Applied Physics Letters, 2011, 98(12): 123109
CrossRef
Google scholar
|
[82] |
Park J B, Xiong W, Xie Z Q, Gao Y, Qian M, Mitchell M, Mahjouri-Samani M, Zhou Y S, Jiang L, Lu Y F. Transparent interconnections formed by rapid single-step fabrication of graphene patterns. Applied Physics Letters, 2011, 99(5): 053103
CrossRef
Google scholar
|
[83] |
Xiong W, Zhou Y S, Hou W J, Jiang L J, Gao Y, Fan L S, Jiang L, Silvain J F, Lu Y F. Direct writing of graphene patterns on insulating substrates under ambient conditions. Scientific Reports, 2014, 4: 4892
CrossRef
Pubmed
Google scholar
|
[84] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401
CrossRef
Pubmed
Google scholar
|
[85] |
Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselov K S, Basko D M, Ferrari A C. Raman spectroscopy of graphene edges. Nano Letters, 2009, 9(4): 1433–1441
CrossRef
Pubmed
Google scholar
|
[86] |
Kuzmenko A B, van Heumen E, Carbone F, van der Marel D. Universal optical conductance of graphite. Physical Review Letters, 2008, 100(11): 117401
CrossRef
Pubmed
Google scholar
|
[87] |
Rigo V A, Martins T B, da Silva A J R, Fazzio A, Miwa R H. Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(7): 075435
CrossRef
Google scholar
|
[88] |
Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J. Doping graphene with metal contacts. Physical Review Letters, 2008, 101(2): 026803
CrossRef
Pubmed
Google scholar
|
[89] |
David J M, Buehler M G. A numerical analysis of various cross sheet resistor test structures. Solid-State Electronics, 1977, 20(6): 539–543
CrossRef
Google scholar
|
[90] |
Fang T, Konar A, Xing H, Jena D. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Applied Physics Letters, 2007, 91(9): 092109
CrossRef
Google scholar
|
[91] |
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312–1314
CrossRef
Pubmed
Google scholar
|
[92] |
Gómez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 2007, 7(11): 3499–3503
CrossRef
Pubmed
Google scholar
|
[93] |
Eda G, Ball J, Mattevi C, Acik M, Artiglia L, Granozzi G, Chabal Y, Anthopoulos T D, Chhowalla M. Partially oxidized graphene as a precursor to graphene. Journal of Materials Chemistry, 2011, 21(30): 11217–11223
CrossRef
Google scholar
|
[94] |
Guo L, Zhang Y, Han D, Jiang H, Wang D, Li X, Xia H, Feng J, Chen Q, Sun H. Laser-mediated programmable N doping and simultaneous reduction of graphene oxides. Advanced Optical Materials, 2014, 2(2): 120–125
|
[95] |
Gates B D, Xu Q, Love J C, Wolfe D B, Whitesides G M. Unconventional nanofabrication. Annual Review of Materials Research, 2004, 34(1): 339–372
CrossRef
Google scholar
|
[96] |
Gates B D, Xu Q, Stewart M, Ryan D, Willson C G, Whitesides G M. New approaches to nanofabrication: molding, printing, and other techniques. Chemical Reviews, 2005, 105(4): 1171–1196
CrossRef
Pubmed
Google scholar
|
[97] |
Dixon C J, Curtines O W. Nanotechnology: Nanofabrication, Patterning, and Self Assembly. New York: Nova Science Publishers Inc., 2009
|
[98] |
Mailly D. Nanofabrication techniques. European Physical Journal. Special Topics, 2009, 172(1): 333–342
CrossRef
Google scholar
|
[99] |
Wiley B J, Qin D, Xia Y. Nanofabrication at high throughput and low cost. ACS Nano, 2010, 4(7): 3554–3559
CrossRef
Pubmed
Google scholar
|
[100] |
Marrian C R K, Dobisz E A, Glembocki O J. Nanofabrication−how small can devices get. R & D Magazine, 1992, 34(2): 123
|
[101] |
Marrian C R K, Tennant D M. Nanofabrication. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2003, 21(5): S207–S215
CrossRef
Google scholar
|
[102] |
Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2008, 2(4): 219–225
CrossRef
Google scholar
|
[103] |
Li L, Fourkas J T. Multiphoton polymerization. Materials Today, 2007, 10(6): 30–37
CrossRef
Google scholar
|
[104] |
Park S H, Yang D Y, Lee K S. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser & Photonics Reviews, 2009, 3(1−2): 1–11
|
[105] |
Lee K, Yang D, Park S H, Kim R H. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications. Polymers for Advanced Technologies, 2006, 17(2): 72–82
CrossRef
Google scholar
|
[106] |
Chong T C, Hong M H, Shi L P. Laser precision engineering: from microfabrication to nanoprocessing. Laser & Photonics Reviews, 2010, 4(1): 123–143
|
[107] |
Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 1994, 19(11): 780–782
CrossRef
Pubmed
Google scholar
|
[108] |
Feigel A, Veinger M, Sfez B, Arsh A, Klebanov M, Lyubin V. Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses. Applied Physics Letters, 2003, 83(22): 4480–4482
CrossRef
Google scholar
|
[109] |
Gomez D, Goenaga I, Lizuain I, Ozaita M. Femtosecond laser ablation for microfluidics. Optical Engineering (Redondo Beach, Calif.), 2005, 44(5): 051105
CrossRef
Google scholar
|
[110] |
Korte F, Serbin J, Koch J, Egbert A, Fallnich C, Ostendorf A, Chichkov B N. Towards nanostructuring with femtosecond laser pulses. Applied Physics. A, Materials Science & Processing, 2003, 77(2): 229–235
|
[111] |
Suriano R, Kuznetsov A, Eaton S M, Kiyan R, Cerullo G, Osellame R, Chichkov B N, Levi M, Turri S. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Applied Surface Science, 2011, 257(14): 6243–6250
CrossRef
Google scholar
|
[112] |
Chichkov B N, Momma C, Nolte S, Von Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics. A, Materials Science & Processing, 1996, 63(2): 109–115
CrossRef
Google scholar
|
[113] |
Sun H B, Xu Y, Juodkazis S, Sun K, Watanabe M, Matsuo S, Misawa H, Nishii J. Arbitrary-lattice photonic crystals created by multiphoton microfabrication. Optics Letters, 2001, 26(6): 325–327
CrossRef
Pubmed
Google scholar
|
[114] |
Zhou G, Gu M. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal. Optics Letters, 2006, 31(18): 2783–2785
CrossRef
Pubmed
Google scholar
|
[115] |
Gu M, Jia B, Li J, Ventura M J. Fabrication of three-dimensional photonic crystals in quantum-dot-based materials. Laser & Photonics Reviews, 2010, 4(3): 414–431
|
[116] |
Fischer P, McWilliam A, Paterson L, Brown C T A, Sibbett W, Dholakia K, MacDonald M P. Two-photon ablation with 1278 nm laser radiation. Journal of Optics. A, Pure and Applied Optics, 2007, 9(6): S19–S23
CrossRef
Google scholar
|
[117] |
Waldbaur A, Rapp H, Länge K, Rapp B E. Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Analytical Methods, 2011, 3(12): 2681–2716
|
[118] |
Goldman J R, Prybyla J A. Ultrafast dynamics of laser-excited electron distributions in silicon. Physical Review Letters, 1994, 72(9): 1364–1367
CrossRef
Pubmed
Google scholar
|
[119] |
Xiong W, Zhou Y S, He X N, Gao Y, Mahjouri-Samani M, Baldacchini T, Lu Y F. Three-dimensional sub-wavelength fabrication by integration of additive and subtractive femtosecond-laser direct writing. In: Proceedings of MRS, Volume 1499, 2013
CrossRef
Google scholar
|
[120] |
Zappe H P. Fundamentals of Micro-Optics. Cambridge, New York: Cambridge University Press, 2010
|
[121] |
Qin D, Xia Y, Whitesides G M. Soft lithography for micro- and nanoscale patterning. Nature Protocols, 2010, 5(3): 491–502
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |