Analysis and modeling of ridge waveguide quarterly wavelength shifted distributed feedback laser with three rate equations

Abbas GHADIMI, Alireza AHADPOUR SHAL

PDF(333 KB)
PDF(333 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (3) : 329-340. DOI: 10.1007/s12200-015-0476-0
RESEARCH ARTICLE

Analysis and modeling of ridge waveguide quarterly wavelength shifted distributed feedback laser with three rate equations

Author information +
History +

Abstract

In this paper, ridge waveguide quarterly wavelength shifted distributed feedback (RW-QWS-DFB) laser was modeled and analyzed. In this behavioral model, some characteristics of the device, such as threshold current, line width, power of output wave, spectrum of output wave, and laser stability in high powers, were investigated in accordance with different physical and geographical parameters such as sizes and structures of the layers. Considering a new proposed algorithm, the analysis of the mentioned structures was performed using transfer matrix method (TMM), the solution of coupled waves and carrier rate equations. The results showed the advantages of some parameters in this structure.

Keywords

distributed feedback laser / transfer matrix method (TMM) / transversal and lateral mode

Cite this article

Download citation ▾
Abbas GHADIMI, Alireza AHADPOUR SHAL. Analysis and modeling of ridge waveguide quarterly wavelength shifted distributed feedback laser with three rate equations. Front. Optoelectron., 2015, 8(3): 329‒340 https://doi.org/10.1007/s12200-015-0476-0

References

[1]
Dumke W P. Interband transitions and maser action. Physical Review, 1962, 127(5): 1559–1563
CrossRef Google scholar
[2]
Hall R N, Fenner G E, Kingsley J D, Soltys T J, Carlson R O. Coherent light emission from GaAs junctions. Physical Review Letters, 1962, 9(9): 366–368
CrossRef Google scholar
[3]
Nathan M I, Dumk W P, Burns G, Dill F H, Lasher G. Stimulated emission of radiation from GaAs p-n junctions. Applied Physics Letters, 1962, 1(3): 62–64
CrossRef Google scholar
[4]
Quist T M, Rediker R H, Keyes R J, Krag W E, Lax B, Mcwhorter A L, Zeigler H J. Semiconductor maser of GaAs. Applied Physics Letters, 1962, 1(4): 91–92
CrossRef Google scholar
[5]
Holonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As1-xPx) junctions. Applied Physics Letters, 1962, 1(4): 82–84
CrossRef Google scholar
[6]
Born M, Wolf E. Principle of Optics. 6th ed. Oxford: Pergamon Press, 1985, Section 7.6.2
[7]
Hayashi I, Panish M, Foy F. A low-threshold room-temperature injection laser. IEEE Journal of Quantum Electronics, 1969, 5(4): 211–212
CrossRef Google scholar
[8]
Kressel H, Nelson H. Close confinement gallium arsenide p-n junction laser with reduced optical loss at room temperature. RCA Review, 1969, 30: 106–113
[9]
Hayashi I, Panish M B. GaAs-GaxAl1-x As heterostructure injection lasers which exhibit low thresholds at room temperature. Journal of Applied Physics, 1970, 41(1): 150–163
CrossRef Google scholar
[10]
Alferov Z I, Andreev V M, Korolkov V I, Portnoi E L, Tretyako D N. Injection properties of n-AlxGa1-x As p-GaAs heterojunctions. Soviet Physics Semiconductors, 1969, 2(7): 843–845
[11]
Hayashi I, Panish M B, Foy P W, Sumski S. Junction lasers which operate continuously at room temperature. Applied Physics Letters, 1970, 17(3): 109–111
CrossRef Google scholar
[12]
Alferov Z I, Andreev V M, Garbuzov D Z, Zhilyaev Y V, Morozov E P, Portnoi E L, Triofim V G. Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Soviet Physics Semiconductors, 1971, 4(9): 1573–1575
[13]
Ripper J E, Dyment J C, D’Asaro L A, Paoli T L. Stripe-geometry double heterostructure junction lasers: mode structure and CW operation above room temperature. Applied Physics Letters, 1971, 18(4): 155–157
CrossRef Google scholar
[14]
Burnham R D, Scifres D R. Etched buried heterostructure GaAs/GaAlAs injection lasers. Applied Physics Letters, 1975, 27(9): 510–512
CrossRef Google scholar
[15]
Kaminow I P, Stulz L W, Ko J S, Miller B I, Feldman R D, Dewinter J C, Pollack M A. Low threshold ridge waveguide laser at 1.55 μm. Electronics Letters, 1983, 19(21): 877–879
CrossRef Google scholar
[16]
Lee T P, Burrus C A, Miller B I, Logan R A. AlxGa1-x As double-heterostructure rib-waveguide injection laser. IEEE Journal of Quantum Electronics, 1975, 11(7): 432–435
CrossRef Google scholar
[17]
Hill D R. 140 Mbit/s optical fiber field demonstration systems. In: Sandbank C P, ed. Optical Fiber Communication Systems. Chichester: John Wiley & Sons, 1980
[18]
Zah C E, Pathk B, Favire F J, Pathak B, Bhat R, Caneau C, Lin P S D, Gozdz A S, Andreadakis N C, Koza M A, Lee T P. Monolithic integration of multiwavelength compressive-strained multiquantum-well distributed-feedback laser array with star coupler and optical amplifiers. Electronics Letters, 1992, 28(25): 2361–2362
[19]
Young M G, Koren U, Miller B I, Chien M, KochT L, Tennant D M, Feder K, Dreyer K, Raybon G. Six wavelength laser array with integrated amplifier and modulator. Electronics Letters, 1995, 31(21): 1835–1836
CrossRef Google scholar
[20]
Katoh Y, Kunii T, Matsui Y, Kamijoh T. Four-wavelength DBR laser array with waveguide couplers fabricated using selective MOVPE growth. Optical and Quantum Electronics, 1996, 28(5): 533–540
CrossRef Google scholar
[21]
Ghafouri-Shiraz H, Lo B S K. Distributed feedback laser diodes. Chichester: John-Wiley & Sons, 1996, chapter 1
[22]
Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics, 1980, 16(3): 347–355
CrossRef Google scholar
[23]
MatthewsM R, CameronK H, WyattR, DevlinW J. Packaged frequency-stable tunable 20 kHz linewidth 1.5 μm InGaAsP external cavity laser. Electronics Letters, 1985, 21(3): 113–115
CrossRef Google scholar
[24]
Tsang W T. The cleaved coupled cavity (C3) laser. In: Semiconductors and semimetals. New York: Academic Press, 1985, 22(B), chapter 5
[25]
Coldren L A, Koch T L. Analysis and design of coupled-cavity lasers-Parts 1: threshold gain analysis and design guidelines. IEEE Journal of Quantum Electronics, 1984, 20(6): 659–670
CrossRef Google scholar
[26]
Tsang W T, Olsson N A, Linke R A, Logan R A. 1.5 μm wavelength GaInAsP C3 lasers: single frequency operation and wideband frequency tuning. Electronics Letters, 1983, 19(11): 415–417
CrossRef Google scholar
[27]
Nakamura M, Yariv A, Yen H W, Somekh S, Garvin H L. Optically pumped GaAs surface laser with corrugation feedback. Applied Physics Letters, 1973, 22(10): 515–516
CrossRef Google scholar
[28]
Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers. Journal of Applied Physics, 1972, 43(5): 2327–2335
CrossRef Google scholar
[29]
Nakamura M, Yariv A, Yen H W, Garmire E, Somekh S, Garvin H L. Laser oscillation in epitaxial GaAs waveguides with corrugation feedback. Applied Physics Letters, 1973, 23(5): 224–225
CrossRef Google scholar
[30]
Scifres D, Burnham R, Streifer W. A distributed feedback single heterojunction diode laser. IEEE Journal of Quantum Electronics, 1974, 10(9): 790–791
CrossRef Google scholar
[31]
Casey H C, Somekh S, Ilegems M. Room-temperature operation of low-threshold separate-confinement heterostructure injection laser with distributed feedback. Applied Physics Letters, 1975, 27(3): 142–144
CrossRef Google scholar
[32]
Utaka K, Akiba S, Sakai K, Matsushima Y. Room-temperature CW operation of distributed-feedback buried heterostructure InGaAsP-InP laser emitting at 1.57 μm. Electronics Letters, 1981, 17(25–26): 961–963
CrossRef Google scholar
[33]
Uematsu Y, Okuda H, Kinoshita J. Room temperature CW operation of 1.3 μm distributed feedback GaInAsP/InP lasers. Electronics Letters, 1982, 18(20): 857–858
CrossRef Google scholar
[34]
Streifer W, Burnham R, Scifres D R. Effect of external reflectors on longitudinal modes of distributed feedback lasers. IEEE Journal of Quantum Electronics, 1975, 11(4): 154–161
CrossRef Google scholar
[35]
Zhou P, Lee G S. Chirped grating λ/4-shifted distributed feedback laser with uniform longitudinal field distribution. Electronics Letters, 1990, 26(20): 1660–1661
CrossRef Google scholar
[36]
Utaka K, Akiba S, Sakai K, Matsushima Y. λ/4-shifted InGaAsP DFB laser by simultaneous holographic exposure of positive and negative photoresists. Electronics Letters, 1984, 20(24): 1008–1010
[37]
Agrawal G P, Geusic J E, Anthony P J. Distributed feedback lasers with multiple phase-shift regions. Applied Physics Letters, 1988, 53(3): 178–179
CrossRef Google scholar
[38]
Thijs P J A, Tiemeijer L F, Binsma J J M, Van D T. Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers. IEEE Journal of Quantum Electronics, 1994, 30(2): 477–499
CrossRef Google scholar
[39]
Morthier G, Vankwikelberge P, David K, Baets R. Improved performance of AR-coated DFB lasers for the introduction of gain coupling. IEEE Photonics Technology Letters, 1990, 2(3): 170–172
CrossRef Google scholar
[40]
Alam M F, Karim M A, Islam S. Effects of structural parameters on the external optical feedback sensitivity in DFB semiconductor lasers. IEEE Journal of Quantum Electronics, 1997, 33(3): 424–433
CrossRef Google scholar
[41]
Yu S F. Dynamic behavior of double-tapered-waveguide distributed feedback lasers. IEEE Journal of Quantum Electronics, 1997, 33(8): 1260–1267
CrossRef Google scholar
[42]
Fessant T. Multisection distributed feedback lasers with a phase-adjustment region and a nonuniform coupling coefficient for high immunity against spatial hole burning. Optics Communications, 1998, 148(1–3): 171–179
CrossRef Google scholar
[43]
Kinoshita J. Analysis of radiation mode effects on oscillating properties of DFB lasers. IEEE Journal of Quantum Electronics, 1999, 35(11): 1569–1583
CrossRef Google scholar
[44]
Winick K A. Longitudinal mode competition in chirped grating distributed feedback lasers. IEEE Journal of Quantum Electronics, 1999, 35(10): 1402–1411
CrossRef Google scholar
[45]
Peral E, Yariv A. Measurement and characterization of laser chirp of multiquantum-well distributed-feedback lasers. IEEE Photonics Technology Letters, 1999, 11(3): 307–309
CrossRef Google scholar
[46]
Hsu A, Chuang S, Fang W, Adams L, Nykolak G, Tanbun-Ek T. A wavelength-tunable curved waveguide DFB laser with an integrated modulator. IEEE Journal of Quantum Electronics, 1999, 35(6): 961–969
CrossRef Google scholar
[47]
Shams-Zadeh-Amiri A M, Li X, Huan W. Above-threshold analysis of second-order circular-grating DFB lasers. IEEE Journal of Quantum Electronics, 2000, 36(3): 259–267
CrossRef Google scholar
[48]
Fernandes C F. Hole-burning corrections in the stationary analysis of DFB laser diodes. Materials Science and Engineering B, 2000, 74(1–3): 75–79
CrossRef Google scholar
[49]
Wang J Y, Cada M. Analysis and optimum design of distributed feedback lasers using coupled-power theory. IEEE Journal of Quantum Electronics, 2000, 36(1): 52–58
CrossRef Google scholar
[50]
Morrison G B, Cassidy D T, Bruce D M. Facet phases and sub-threshold spectra of DFB lasers: spectral extraction, features, explanations and verification. IEEE Journal of Quantum Electronics, 2001, 37(6): 762–769
CrossRef Google scholar
[51]
Agrawal G P, Dutta N K. Semiconductor Lasers. 2nd ed. New York: Van Nostrand Reinhold, 1993
[52]
Adams M J, Wyatt R. An Introduction to Optical Waveguide. London: John Wiley & Sons, 1981
[53]
Nakano Y, Luo Y, Tada K. Facet reflection independent, single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupling mechanism. Applied Physics Letters, 1989, 55(16): 1606–1608
CrossRef Google scholar
[54]
Morthier G, Baets R. Modelling of distributed feedback lasers. In: Compound Semiconductor Device Modelling. London: Springer-Verlag, 1993, chapter 7, 119–148
[55]
Vankwikelberge P, Morthier G, Baets R. CLADISS-a longitudinal multimode model for the analysis of the static, dynamic, and stochastic behavior of diode lasers with distributed feedback. IEEE Journal of Quantum Electronics, 1990, 26(10): 1728–1741
CrossRef Google scholar
[56]
Morthier G. An accurate rate-equation description for DFB lasers and some interesting solutions. IEEE Journal of Quantum Electronics, 1997, 33(2): 231–237
CrossRef Google scholar
[57]
Henry C H. Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics, 1982, 18(2): 259–264
CrossRef Google scholar
[58]
Pan X, Olesen H, Tromborg B. Spectral linewidth of DFB lasers including the effects of spatial holeburning and nonuniform current injection. IEEE Photonics Technology Letters, 1990, 2(5): 312–315
CrossRef Google scholar
[59]
Henry C H. Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers. Journal of Lightwave Technology, 1986, 4(3): 288–297
CrossRef Google scholar
[60]
Sugimura A, Patzak E, Meissner P. Homogenous linewidth and linewidth enhancement factor for a GaAs semiconductor laser. Journal of Physics D: Applied Physics, 1986, 19(1): 7–16
CrossRef Google scholar
[61]
Kikuchi K, Okoshi T. Measurement of FM noise, AM noise, and field spectra of 1.3 μm InGaAsP DFB lasers and determination of the linewidth enhancement factor. IEEE Journal of Quantum Electronics, 1985, 21(11): 1814–1818
CrossRef Google scholar
[62]
Vahala K, Chiu L C, Margalit S, Yariv A. On the linewidth enhancement factor α in semiconductor injection lasers. Applied Physics Letters, 1983, 42(8): 631–633
CrossRef Google scholar
[63]
Fujise M. Spectral linewidth estimation of a 1.5 μm range InGaAsP/InP distributed feedback laser. IEEE Journal of Quantum Electronics, 1986, 22(3): 458–462
CrossRef Google scholar
[64]
Kojima K, Kyuma K, Nakayama T. Analysis of spectral linewidth of distributed feedback laser diodes. Journal of Lightwave Technology, 1985, 3(5): 1048–1055
CrossRef Google scholar
[65]
Tromborg B, Olesen H, Pan X, Saito S. Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers. IEEE Journal of Quantum Electronics, 1987, 23(11): 1875–1889
CrossRef Google scholar
[66]
Makino T. Transfer-matrix formulation of spontaneous emission noise of DFB semiconductor lasers. Journal of Lightwave Technology, 1991, 9(1): 84–91
CrossRef Google scholar
[67]
Makino T, Glinski J. Transfer matrix analysis of the amplified spontaneous emission of DFB semiconductor laser amplifiers. IEEE Journal of Quantum Electronics, 1988, 24(8): 1507–1518
CrossRef Google scholar
[68]
Agrawal G P, Bobeck A. Modeling of distributed feedback semiconductor lasers with axially-varying parameters. IEEE Journal of Quantum Electronics, 1988, 24(12): 2407–2414
CrossRef Google scholar
[69]
Shahshahani F, Ahmadi V. Analysis of relative intensity noise in tapered grating QWS-DFB laser diodes by using three rate equations model. Solid-State Electronics, 2008, 52(6): 857–862
[70]
Osinsky M, Polish M, Adams M J. Gain spectra of quarternary semiconductor. In: Proceedings of the IEEE I (Solid-State and Electron Devices). 1982, 129(6): 229–236
[71]
Rabinovich W S, Feldman B J. Spatial hole burning effects in distributed feedback lasers. IEEE Journal of Quantum Electronics, 1989, 25(1): 20–30
CrossRef Google scholar

Acknowledgements

This work was supported in part by Islamic Azad University.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(333 KB)

Accesses

Citations

Detail

Sections
Recommended

/