Technology developments and biomedical applications of polarization-sensitive optical coherence tomography

Zhenyang DING, Chia-Pin LIANG, Yu CHEN

PDF(6573 KB)
PDF(6573 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (2) : 128-140. DOI: 10.1007/s12200-015-0475-1
REVIEW ARTICLE
REVIEW ARTICLE

Technology developments and biomedical applications of polarization-sensitive optical coherence tomography

Author information +
History +

Abstract

Polarization-sensitive optical coherence tomography (PS-OCT) enables depth-resolved mapping of sample polarization information, such as phase-retardation and optical axis orientation, which is particularly useful when the nano-scale organization of tissue that are difficult to be observed in the intensity images of a regular optical coherence tomography (OCT). In this review, we survey two types of methods and systems of PS-OCT. The first type is PS-OCT with single input polarization state, which contain bulk optics or polarization maintaining fiber (PMF) based systems and single-mode fiber (SMF) based systems. The second type is PS-OCT with two different input polarization states, which contain SMF based systems and PMF based systems, through either time, frequency, or depth multiplexing. In addition, representative biomedical applications using PS-OCT, such as retinal imaging, skin cancer detection, and brain mapping, are demonstrated.

Keywords

optical coherence tomography (OCT) / polarization-sensitive optical coherence tomography (PS-OCT) / polarization / imaging

Cite this article

Download citation ▾
Zhenyang DING, Chia-Pin LIANG, Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography. Front. Optoelectron., 2015, 8(2): 128‒140 https://doi.org/10.1007/s12200-015-0475-1

References

[1]
Hee M R, Huang D, Swanson E A, Fujimoto J G. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. Journal of the Optical Society of America. B, Optical Physics, 1992, 9(6): 903–908
CrossRef Google scholar
[2]
Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A. Optical coherence tomography. Science, 1991, 254(5035): 1178–1181
CrossRef Pubmed Google scholar
[3]
de Boer J, Srinivas S, Malekafzali A, Chen Z, Nelson J. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Optics Express, 1998, 3(6): 212–218
CrossRef Pubmed Google scholar
[4]
Schoenenberger K, Colston B W, Maitland D J, Da Silva L B, Everett M J. Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography. Applied Optics, 1998, 37(25): 6026–6036
CrossRef Pubmed Google scholar
[5]
Park B H, Saxer C, Srinivas S M, Nelson J S, de Boer J F. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. Journal of Biomedical Optics, 2001, 6(4): 474–479
CrossRef Pubmed Google scholar
[6]
Jiao S, Wang L V. Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. Journal of Biomedical Optics, 2002, 7(3): 350–358
CrossRef Pubmed Google scholar
[7]
Jiao S, Yu W, Stoica G, Wang L V. Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging. Applied Optics, 2003, 42(25): 5191–5197
CrossRef Pubmed Google scholar
[8]
Pierce M C, Strasswimmer J, Park B H, Cense B, de Boer J F. Advances in optical coherence tomography imaging for dermatology. The Journal of Investigative Dermatology, 2004, 123(3): 458–463
CrossRef Pubmed Google scholar
[9]
Srinivas S M, de Boer J F, Park H, Keikhanzadeh K, Huang H E, Zhang J, Jung W Q, Chen Z, Nelson J S. Determination of burn depth by polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9(1): 207–212
CrossRef Pubmed Google scholar
[10]
Strasswimmer J, Pierce M C, Park B H, Neel V, de Boer J F. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. Journal of Biomedical Optics, 2004, 9(2): 292–298
CrossRef Pubmed Google scholar
[11]
Duan L, Marvdashti T, Lee A, Tang J Y, Ellerbee A K. Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography. Biomedical Optics Express, 2014, 5(10): 3717–3729
CrossRef Pubmed Google scholar
[12]
Pircher M, Goetzinger E, Leitgeb R, Hitzenberger C K. Transversal phase resolved polarization sensitive optical coherence tomography. Physics in Medicine and Biology, 2004, 49(7): 1257–1263
CrossRef Pubmed Google scholar
[13]
Götzinger E, Pircher M, Sticker M, Fercher A F, Hitzenberger C K. Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9(1): 94–102
CrossRef Pubmed Google scholar
[14]
Ducros M G, de Boer J F, Huang H E, Chao L C, Chen Z P, Nelson J S, Milner T E, Rylander H III. Polarization sensitive optical coherence tomography of the rabbit eye. IEEE Journal on Selected Topics in Quantum Electronics, 1999, 5(4): 1159–1167
CrossRef Google scholar
[15]
Ducros M G, Marsack J D, Rylander H G 3rd, Thomsen S L, Milner T E. Primate retina imaging with polarization-sensitive optical coherence tomography. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18(12): 2945–2956
CrossRef Pubmed Google scholar
[16]
Cense B, Chen T C, Park B H, Pierce M C, de Boer J F. In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9(1): 121–125
CrossRef Pubmed Google scholar
[17]
Götzinger E, Pircher M, Hitzenberger C K. High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Optics Express, 2005, 13(25): 10217–10229
CrossRef Pubmed Google scholar
[18]
Kemp N J, Park J, Zaatari H N, Rylander H G, Milner T E. High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2005, 22(3): 552–560
CrossRef Pubmed Google scholar
[19]
Baumann B, Choi W, Potsaid B, Huang D, Duker J S, Fujimoto J G. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit. Optics Express, 2012, 20(9): 10229–10241
CrossRef Pubmed Google scholar
[20]
Götzinger E, Pircher M, Geitzenauer W, Ahlers C, Baumann B, Michels S, Schmidt-Erfurth U, Hitzenberger C K. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Optics Express, 2008, 16(21): 16410–16422
CrossRef Pubmed Google scholar
[21]
Zotter S, Pircher M, Torzicky T, Baumann B, Yoshida H, Hirose F, Roberts P, Ritter M, Schütze C, Götzinger E, Trasischker W, Vass C, Schmidt-Erfurth U, Hitzenberger C K. Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology. Biomedical Optics Express, 2012, 3(11): 2720–2732
CrossRef Pubmed Google scholar
[22]
Cense B, Chen T C, Park B H, Pierce M C, de Boer J F. Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Investigative Ophthalmology & Visual Science, 2004, 45(8): 2606–2612
CrossRef Pubmed Google scholar
[23]
Makita S, Yamanari M, Yasuno Y. Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging. Optics Express, 2010, 18(2): 854–876
CrossRef Pubmed Google scholar
[24]
Wang X J, Milner T E, de Boer J F, Zhang Y, Pashley D H, Nelson J S. Characterization of dentin and enamel by use of optical coherence tomography. Applied Optics, 1999, 38(10): 2092–2096
CrossRef Pubmed Google scholar
[25]
Baumgartner A, Dichtl S, Hitzenberger C K, Sattmann H, Robl B, Moritz A, Fercher A F, Sperr W. Polarization-sensitive optical coherence tomography of dental structures. Caries Research, 2000, 34(1): 59–69
CrossRef Pubmed Google scholar
[26]
Fried D, Xie J, Shafi S, Featherstone J D, Breunig T M, Le C. Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. Journal of Biomedical Optics, 2002, 7(4): 618–627
CrossRef Pubmed Google scholar
[27]
Chen Y, Otis L, Piao D, Zhu Q. Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system. Applied Optics, 2005, 44(11): 2041–2048
CrossRef Pubmed Google scholar
[28]
Jones R S, Darling C L, Featherstone J D, Fried D. Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography. Journal of biomedical optics, 2006, 11(1): 014016
[29]
Pierce M, Shishkov M, Park B, Nassif N, Bouma B, Tearney G, de Boer J. Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography. Optics Express, 2005, 13(15): 5739–5749
CrossRef Pubmed Google scholar
[30]
Fan C, Yao G. Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography. Biomedical Optics Express, 2013, 4(3): 460–465
CrossRef Pubmed Google scholar
[31]
Wang Y, Yao G. Optical tractography of the mouse heart using polarization-sensitive optical coherence tomography. Biomedical Optics Express, 2013, 4(11): 2540–2545
CrossRef Pubmed Google scholar
[32]
Hariri L P, Villiger M, Applegate M B, Mino-Kenudson M, Mark E J, Bouma B E, Suter M J. Seeing beyond the bronchoscope to increase the diagnostic yield of bronchoscopic biopsy. American Journal of Respiratory and Critical Care Medicine, 2013, 187(2): 125–129
CrossRef Pubmed Google scholar
[33]
Pasquesi J J, Schlachter S C, Boppart M D, Chaney E, Kaufman S J, Boppart S A. In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography. Optics Express, 2006, 14(4): 1547–1556
CrossRef Pubmed Google scholar
[34]
Matcher S J, Winlove C P, Gangnus S V. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography. Physics in Medicine and Biology, 2004, 49(7): 1295–1306
CrossRef Pubmed Google scholar
[35]
Wang H, Black A J, Zhu J, Stigen T W, Al-Qaisi M K, Netoff T I, Abosch A, Akkin T. Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. NeuroImage, 2011, 58(4): 984–992
CrossRef Pubmed Google scholar
[36]
Wang H, Zhu J, Akkin T. Serial optical coherence scanner for large-scale brain imaging at microscopic resolution. NeuroImage, 2014, 84: 1007–1017
CrossRef Pubmed Google scholar
[37]
Nakaji H, Kouyama N, Muragaki Y, Kawakami Y, Iseki H. Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography. Journal of Neuroscience Methods, 2008, 174(1): 82–90
CrossRef Pubmed Google scholar
[38]
Al-Qaisi M K, Akkin T. Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber. Optics Express, 2010, 18(4): 3392–3403
CrossRef Pubmed Google scholar
[39]
Hitzenberger C, Goetzinger E, Sticker M, Pircher M, Fercher A. Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Optics Express, 2001, 9(13): 780–790
CrossRef Pubmed Google scholar
[40]
Wang H, Al-Qaisi M K, Akkin T. Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain. Optics Letters, 2010, 35(2): 154–156
CrossRef Pubmed Google scholar
[41]
de Boer J F, Milner T E. Review of polarization sensitive optical coherence tomography and Stokes vector determination. Journal of Biomedical Optics, 2002, 7(3): 359–371
CrossRef Pubmed Google scholar
[42]
Bonesi M, Sattmann H, Torzicky T, Zotter S, Baumann B, Pircher M, Götzinger E, Eigenwillig C, Wieser W, Huber R, Hitzenberger C K. High-speed polarization sensitive optical coherence tomography scan engine based on Fourier domain mode locked laser. Biomedical Optics Express, 2012, 3(11): 2987–3000
CrossRef Pubmed Google scholar
[43]
Trasischker W, Zotter S, Torzicky T, Baumann B, Haindl R, Pircher M, Hitzenberger C K. Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer. Biomedical Optics Express, 2014, 5(8): 2798–2809
CrossRef Pubmed Google scholar
[44]
Ding Z, Liang C, Tang Q, Chen Y. Quantitative measurement of tissue birefringence by single mode fiber based PS-OCT with a single input polarization state using Muller matrix. Submitted to Biomedical Optics Express
[45]
Park B H, Pierce M C, Cense B, de Boer J F. Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. Optics Letters, 2004, 29(21): 2512–2514
CrossRef Pubmed Google scholar
[46]
Oh W Y, Yun S H, Vakoc B J, Shishkov M, Desjardins A E, Park B H, de Boer J F, Tearney G J, Bouma B E. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Optics Express, 2008, 16(2): 1096–1103
CrossRef Pubmed Google scholar
[47]
Fan C, Yao G. Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography. Optics Letters, 2012, 37(9): 1415–1417
CrossRef Pubmed Google scholar
[48]
Fan C, Yao G. Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2012, 17(11): 110501
CrossRef Pubmed Google scholar
[49]
Fan C, Yao G. Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera. Optics Express, 2012, 20(20): 22360–22371
CrossRef Pubmed Google scholar
[50]
Fan C, Yao G. Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation. Optics Express, 2010, 18(7): 7281–7287
CrossRef Pubmed Google scholar
[51]
Yamanari M, Makita S, Yasuno Y. Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. Optics Express, 2008, 16(8): 5892–5906
CrossRef Pubmed Google scholar
[52]
Guo S, Zhang J, Wang L, Nelson J S, Chen Z. Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography. Optics Letters, 2004, 29(17): 2025–2027
CrossRef Pubmed Google scholar
[53]
Yun S, Tearney G, de Boer J, Bouma B. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Optics Express, 2004, 12(20): 4822–4828
CrossRef Pubmed Google scholar
[54]
Corsi F, Galtarossa A, Palmieri L. Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique. Journal of Lightwave Technology, 1998, 16(10): 1832–1843
CrossRef Google scholar
[55]
Park B, Pierce M, Cense B, de Boer J. Real-time multi-functional optical coherence tomography. Optics Express, 2003, 11(7): 782–793
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Institutes of Health (NIH) (Grant Nos. R01DK094877, R21AG042700, R21DK088066 and R21EB012215), and the National Science Foundation (NSF) (Grant No. CBET-1254743) (CAREER Award). We acknowledge Qinggong Tang for helpful comments.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(6573 KB)

Accesses

Citations

Detail

Sections
Recommended

/