An improved noise reduction algorithm based on wavelet transformation for MEMS gyroscope

Jianguo YUAN, Yantao YUAN, Feilong LIU, Yu PANG, Jinzhao LIN

PDF(646 KB)
PDF(646 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (4) : 413-418. DOI: 10.1007/s12200-015-0474-2
RESEARCH ARTICLE
RESEARCH ARTICLE

An improved noise reduction algorithm based on wavelet transformation for MEMS gyroscope

Author information +
History +

Abstract

To solve the large noise problem for the low-precision gyroscopes in micro-electro mechanical systems (MEMS) of inertial navigation system, an improved noise reduction method, based on the analyses of the fast Fourier transformation (FFT) noise reduction principle and the simple wavelet noise reduction principle, was proposed. Furthermore, the FFT noise reduction method, the simple wavelet noise reduction method and the improved noise reduction method were comparatively analyzed and experimentally verified in the case of the constant rate and dynamic rate. The experimental analysis results showed that the improved noise reduction method had a very good result in the noise reduction of the gyroscope data at different frequencies, and its performance was superior to those of the FFT noise reduction method and the simple wavelet noise reduction method.

Keywords

micro-electro mechanical systems (MEMS) / gyroscopes / fast Fourier transformation (FFT) noise reduction / wavelet noise reduction

Cite this article

Download citation ▾
Jianguo YUAN, Yantao YUAN, Feilong LIU, Yu PANG, Jinzhao LIN. An improved noise reduction algorithm based on wavelet transformation for MEMS gyroscope. Front. Optoelectron., 2015, 8(4): 413‒418 https://doi.org/10.1007/s12200-015-0474-2

References

[1]
Peshekhonov V G. Gyroscopic navigation systems: current status and prospects. Gyroscopy and Navigation, 2011, 2(3): 111–118
CrossRef Google scholar
[2]
Acar C, Schofield A R, Trusov A A. Environmentally robust MEMS vibratory gyroscopes for automotive. IEEE Sensors Journal, 2009, 9(12): 1895–1906
[3]
Zeng B, Teng Z S, Cai Y L, Guo S Y, Qing B Y. Harmonic phasor analysis based on improved FFT algorithm. IEEE Transactions on, 2011, 2(1): 51–59
[4]
Liu Q J, Chen G M, Liu X F, Zhan J. Application of FFT and wavelet in signal denoising. Journal of Data Acquisition & Processing, 2009, 24 (S1): 58–60
[5]
Mao B, Wu J W, Wu J T, Zhou X M. MEMS gyro denoising based on second generation wavelet transform. In: Proceedings of IEEE on Pervasive Computing Signal Processing and Applications (PCSPA). 2010, 255–258
[6]
Wang D K, Peng J Y. Wavelet Analysis and Its Application in Signal Processing. Beijing: Electronic Industry Press, 2006
[7]
Hao W G, Ding C F, Na L. Comparison of wavelet denoise and FFT denoise. Electric Power Scienceand Engineering, 2011, 27(3): 59–61
[8]
Song L J, Qin Y Y, Yang P X. Application of walelet threshold denosing on MEMS gyro. Journal of Test and Measurement Technology, 2009, 23(1): 33–36
[9]
Vaseghi S V. Advanced Digital Signal Processing and Noise Reduction. New York: John Wiley & Sons, 2008
[10]
Kang C H, Kim S Y, Park C G. Improvement of a low cost MEMS inertial-GPS integrated system using wavelet denoising techniques. International Journal of Aeronautical and Space Sciences, 2011, 12(4): 371–378
CrossRef Google scholar
[11]
Han M, Liu Y, Xi J, Guo W. Noise smoothing for nonlinear time series using wavelet soft threshold. Signal Processing Letters, IEEE, 2007, 14(1): 62–65
CrossRef Google scholar
[12]
Ji X S, Wang S, Xu Y. Application of the digital signal procession in the MEMS gyroscope de-drift. In: Proceedings of IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2006, 218–221
[13]
Zhang W L, Guo S Y, Yin J, Yu F. Wavelet threshold de-noising for MEMS gyro. Journal of Applied Optics, 2009, 30(6): 1012–1015 (in Chinese)
[14]
Mao B, Wu J W, Wu J T, Zhou X M. MEMS gyro de-noising based on coefficients dependency in wavelet transform domain. In: Proceedings of IEEE International Conference on Mechatronics and Automation (ICMA). 2010, 1904–1907
[15]
Huang L, Kemao Q, Pan B, Asundi A K. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Optics and Lasers in Engineering, 2010, 48(2): 141–148
CrossRef Google scholar

Acknowledgements

This work was financially supported by the Program for Innovation Team Building at Institutions of Higher Education in Chongqing, the National Natural Science Foundation of China (Grant Nos. 51075420 and 61371096), and the Natural Science Foundation of Chongqing Science & Technology Commission (CQ CSTC) (No. 2010BB2409).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(646 KB)

Accesses

Citations

Detail

Sections
Recommended

/