Dispersion of double-slot microring resonators in optical buffer

Chuan WANG, Xiaoying LIU, Peng ZHOU, Peng LI, Jia DU

PDF(855 KB)
PDF(855 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (1) : 106-111. DOI: 10.1007/s12200-015-0472-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Dispersion of double-slot microring resonators in optical buffer

Author information +
History +

Abstract

In the optical packet switching network, optical buffer is an important device. Microring resonator optical buffers provide good delay performance and flexibility in design. By cascading multiple microring resonators, higher delay-bandwidth product is obtained, but the requirements of high integration and low dispersion are hard to satisfy simultaneously. Double-slot waveguide was proposed to construct highly integrated racetrack microring resonators in this study. Based on dispersion analysis of the thickness of each layer of a waveguide, the structure of waveguide was optimized to reach flat and low dispersion. Average dispersions of straight and 3 μm bend waveguides were 5.1 ps/(nm∙km) and 4.4 ps/(nm∙km), respectively. Besides, the additional loss from coupling was greatly reduced when applying proper relative displacement between straight and bend waveguides. Theoretical and design basis provided in this paper will help to develop multi-microring optical buffers in the future.

Keywords

microring / optical buffer / double-slot waveguide

Cite this article

Download citation ▾
Chuan WANG, Xiaoying LIU, Peng ZHOU, Peng LI, Jia DU. Dispersion of double-slot microring resonators in optical buffer. Front. Optoelectron., 2016, 9(1): 106‒111 https://doi.org/10.1007/s12200-015-0472-4

References

[1]
Willner A E, Zhang L, Yang J Y. Micro-resonator devices and optical broadband access application. In: Proceedings of the International Society for Optics and Photonics, (OPTO). 2011, 795803
[2]
Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73
CrossRef Google scholar
[3]
Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photonics, 2007, 1(1): 65–71
CrossRef Google scholar
[4]
Cao T T, Zhang L B, Fei Y H, Cao Y M, Lei X, Chen S W. Design of a high-speed silicon electro-optical modulator based on an add-drop micro-ring resonator. Acta Physica Sinica, 2013, 62(19): 194210 (in Chinese)
[5]
Zhang X, Li Z Q, Tong K. A cross bus single microring electro-optical switch with U bend waveguide. Acta Physica Sinica, 2014, 63(9): 094207 (in Chinese)
[6]
Ren G H, Chen S W, Cao T T. Theoretical analysis of a thermal-optical tunable filter based on Vernier effect of cascade microring resonators. Acta Physica Sinica, 2012, 61(3): 034215 (in Chinese)
[7]
Fontaine N K, Yang J, Pan Z, Chu S, Chen W, Little B E, Ben Yoo S. Continuously tunable optical buffering at 40 Gb/s for optical packet switching networks. Journal of Lightwave Technology, 2008, 26(23): 3776–3783
CrossRef Google scholar
[8]
Shinobu F, Ishikura N, Arita Y, Tamanuki T, Baba T. Continuously tunable slow-light device consisting of heater-controlled silicon microring array. Optics Express, 2011, 19(14): 13557–13564
CrossRef Pubmed Google scholar
[9]
Morichetti F, Melloni A, Breda A, Canciamilla A, Ferrari C, Martinelli M. A reconfigurable architecture for continuously variable optical slow-wave delay lines. Optics Express, 2007, 15(25): 17273–17282
CrossRef Pubmed Google scholar
[10]
Boeck R, Chrostowski L, Jaeger N A. Thermally tunable quadruple Vernier racetrack resonators. Optics Letters, 2013, 38(14): 2440–2442
CrossRef Pubmed Google scholar
[11]
Khurgin J B. Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. Journal of the Optical Society of America B, 2005, 22(5): 1062–1074
CrossRef Google scholar
[12]
Poon J K, Scheuer J, Xu Y, Yariv A. Designing coupled-resonator optical waveguide delay lines. Journal of the Optical Society of America B, 2004, 21(9): 1665–1673
CrossRef Google scholar
[13]
Poon J K, Zhu L, DeRose G A, Yariv A. Transmission and group delay of microring coupled-resonator optical waveguides. Optics Letters, 2006, 31(4): 456–458
CrossRef Pubmed Google scholar
[14]
Cooper M L, Gupta G, Schneider M A, Green W M, Assefa S, Xia F, Gifford D K, Mookherjea S. Waveguide dispersion effects in silicon-on-insulator coupled-resonator optical waveguides. Optics Letters, 2010, 35(18): 3030–3032
CrossRef Pubmed Google scholar
[15]
Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
CrossRef Pubmed Google scholar
[16]
Sun R, Dong P, Feng N N, Hong C Y, Michel J, Lipson M, Kimerling L. Horizontal single and multiple slot waveguides: optical transmission at λ= 1550 nm. Optics Express, 2007, 15(26): 17967–17972
CrossRef Pubmed Google scholar
[17]
Yu P, Qi B, Jiang X, Wang M, Yang J. Ultrasmall-V high-Q photonic crystal nanobeam microcavities based on slot and hollow-core waveguides. Optics Letters, 2011, 36(8): 1314–1316
CrossRef Pubmed Google scholar
[18]
Zhang L, Yue Y, Xiao-Li Y, Wang J, Beausoleil R G, Willner A E. Flat and low dispersion in highly nonlinear slot waveguides. Optics Express, 2010, 18(12): 13187–13193
CrossRef Pubmed Google scholar
[19]
Bao C, Yan Y, Zhang L, Yue Y, Willner A E. Tailoring of low chromatic dispersion over a broadband in silicon waveguides using a double-slot design. In: Proceedings of CLEO: QELS_Fundamental Science. 2013, JTu4A.53
[20]
Yan Y, Matsko A, Bao C, Maleki L, Willner A E. Increasing the spectral bandwidth of optical frequency comb generation in a microring resonator using dispersion tailoring slotted waveguide. In: Proceedings of IEEE Photonics Conference (IPC). 2013, 230–231
[21]
Zhu M, Liu H, Li X, Huang N, Sun Q, Wen J, Wang Z. Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. Optics Express, 2012, 20(14): 15899–15907
CrossRef Pubmed Google scholar
[22]
Sanchis P, Blasco J, Martínez A, Martí J. Design of silicon-based slot waveguide configurations for optimum nonlinear performance. Journal of Lightwave Technology, 2007, 25(5): 1298–1305
CrossRef Google scholar
[23]
Keivani H, Kargar A. Bending efficiency of bent multiple-slot waveguides. Chinese Physics Letters, 2009, 26(12): 124204

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61107051) and National High-tech R&D Program (No. SS2012AA010407).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(855 KB)

Accesses

Citations

Detail

Sections
Recommended

/