Fourier domain optical coherence tomography with ultralong depth range

Zhihua DING, Yi SHEN, Wen BAO, Peng LI

PDF(1061 KB)
PDF(1061 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (2) : 163-169. DOI: 10.1007/s12200-015-0463-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Fourier domain optical coherence tomography with ultralong depth range

Author information +
History +

Abstract

The depth ranges of typical implementations of Fourier domain optical coherence tomography (FDOCT), including spectral domain OCT (SDOCT) and swept source OCT (SSOCT), are limited to several millimeters. To extend the depth range of current OCT systems, two novel systems with ultralong depth range were developed in this study. One is the orthogonal dispersive SDOCT (OD-SDOCT), and the other is the recirculated swept source (R-SS) interferometer/OCT. No compromise between depth range and depth resolution is required in both systems. The developed OD-SDOCT system realized the longest depth range (over 100 mm) ever achieved by SDOCT, which is ready to be modified for depth-encoded parallel imaging on multiple sites. The developed R-SS interferometer achieved submicron precision within a depth range of 30 mm, holding potential in real-time contact-free on-axis metrology of complex optical systems.

Keywords

optical coherence tomography (OCT) / virtually-imaged phased array (VIPA) / orthogonal dispersion / swept source / light recirculation / parallel imaging / dimensional metrology

Cite this article

Download citation ▾
Zhihua DING, Yi SHEN, Wen BAO, Peng LI. Fourier domain optical coherence tomography with ultralong depth range. Front. Optoelectron., 2015, 8(2): 163‒169 https://doi.org/10.1007/s12200-015-0463-5

References

[1]
Wang Z, Yuan Z, Wang H, Pan Y. Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique. Optics Express, 2006, 14(16): 7014–7023
CrossRef Pubmed Google scholar
[2]
Huber R, Wojtkowski M, Taira K, Fujimoto J, Hsu K. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Optics Express, 2005, 13(9): 3513–3528
CrossRef Pubmed Google scholar
[3]
Wojtkowski M, Kowalczyk A, Leitgeb R, Fercher A F. Full range complex spectral optical coherence tomography technique in eye imaging. Optics Letters, 2002, 27(16): 1415–1417
CrossRef Pubmed Google scholar
[4]
Wang K, Ding Z, Zeng Y, Meng J, Chen M. Sinusoidal B-M method based spectral domain optical coherence tomography for the elimination of complex-conjugate artifact. Optics Express, 2009, 17(19): 16820–16833
CrossRef Pubmed Google scholar
[5]
Davis A M, Choma M A, Izatt J A. Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal. Journal of Biomedical Optics, 2005, 10(6): 064005
CrossRef Pubmed Google scholar
[6]
Bajraszewski T, Wojtkowski M, Szkulmowski M, Szkulmowska A, Huber R, Kowalczyk A. Improved spectral optical coherence tomography using optical frequency comb. Optics Express, 2008, 16(6): 4163–4176
CrossRef Pubmed Google scholar
[7]
Wang C, Ding Z, Mei S, Yu H, Hong W, Yan Y, Shen W. Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography. Optics Letters, 2012, 37(21): 4555–4557
CrossRef Pubmed Google scholar
[8]
Bao W, Ding Z, Li P, Chen Z, Shen Y, Wang C. Orthogonal dispersive spectral-domain optical coherence tomography. Optics Express, 2014, 22(8): 10081–10090
CrossRef Pubmed Google scholar
[9]
Shen Y, Ding Z, Yan Y, Wang C, Yang Y, Zhang Y. Extended range phase-sensitive swept source interferometer for real-time dimensional metrology. Optics Communications, 2014, 318: 88–94
CrossRef Google scholar
[10]
Hendargo H C, Bower B A, Reinstein A S, Shepherd N, Tao Y K, Izatt J A. Depth-encoded spectral domain phase microscopy for simultaneous multi-site nanoscale optical measurements. Optics Communications, 2011, 284(19): 4847–4851
CrossRef Pubmed Google scholar

Acknowledgements

We acknowledge financial supports from the NationalNatural Science Foundation of China (Grant Nos. 61275196, 61335003 and 61327007), Zhejiang Province Science and Technology Grant (No. 2012C33031), Zhejiang Provincial Natural Science Foundation of China (No. LY14F050007), and the Fundamental Research Funds for the Central Universities (No. 2014QNA5017).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1061 KB)

Accesses

Citations

Detail

Sections
Recommended

/