Lens distortion correction based on one chessboard pattern image

Yubin WU, Shixiong JIANG, Zhenkun XU, Song ZHU, Danhua CAO

PDF(1709 KB)
PDF(1709 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (3) : 319-328. DOI: 10.1007/s12200-015-0453-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Lens distortion correction based on one chessboard pattern image

Author information +
History +

Abstract

This paper proposes a detection method of chessboard corner to correct camera distortions –including radial distortion, decentering distortion and prism distortion. This proposed method could achieve high corner detection rate. Then we used iterative procedure to optimize distortion parameter to minimize distortion residual. In this method, first, non-distortion points are evaluated by four points near image center; secondly, Levenberg-Marquardt nonlinear optimization algorithm was adopted to calculate distortion parameters, and then to correct image by these parameters; thirdly, we calculated corner points on the corrected image, and repeated previous two steps until distortion parameters converge. Results showed the proposed method by iterative procedure can make the impact of slight distortion around image center negligible and the average of distortion residual of one line is almost 0.3 pixels.

Keywords

computer vision / camera distortion / distortion correction / corner detection

Cite this article

Download citation ▾
Yubin WU, Shixiong JIANG, Zhenkun XU, Song ZHU, Danhua CAO. Lens distortion correction based on one chessboard pattern image. Front. Optoelectron., 2015, 8(3): 319‒328 https://doi.org/10.1007/s12200-015-0453-7

References

[1]
Abellard A, Bouchouicha M, Ben Khelifa M. A genetic algorithm application to stereo calibration. In: Proceedings of 2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Espoo, Finland. 2005, 285–290
[2]
Brown D C. Close-range camera calibration. Photogrammetric Engineering, 1971, 37(8): 855–866
[3]
Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(10): 965–980
CrossRef Google scholar
[4]
Zhang Z. On the epipolar geometry between two images with lens distortion. In: Proceedings of the 13th International Conference on Pattern Recognition (ICPR), Vienna. 1996, 407–411
[5]
Du X, Li H, Zhu Y. Camera lens radial distortion correction using two-view projective invariants. Optics Letters, 2011, 36(24): 4734–4736
CrossRef Pubmed Google scholar
[6]
Goljan M, Fridrich J. Estimation of lens distortion correction from single images. In: Proceedings of SPIE 9028, Media Watermarking, Security, and Forensics. 2014, 90280N
[7]
Prescott B, McLean G. Line-based correction of radial lens distortion. Graphical Models and Image Processing, 1997, 59(1): 39–47
CrossRef Google scholar
[8]
Gao D, Yin F. Computing a complete camera lens distortion model by planar homography. Optics & Laser Technology, 2013, 49: 95–107
CrossRef Google scholar
[9]
Hartley R, Kang S B. Parameter-free radial distortion correction with center of distortion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1309–1321
CrossRef Pubmed Google scholar
[10]
Park J, Byun S C, Lee B U. Lens distortion correction using ideal image coordinates. IEEE Transactions on Consumer Electronics, 2009, 55(3): 987–991
CrossRef Google scholar
[11]
Manolis L. Levenberg-Marquardt nonlinear least squares algorithms in C/C++

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1709 KB)

Accesses

Citations

Detail

Sections
Recommended

/