Improved gas sensor with air-core photonic bandgap fiber

Saeed OLYAEE, Hassan ARMAN

PDF(588 KB)
PDF(588 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (3) : 314-318. DOI: 10.1007/s12200-015-0447-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Improved gas sensor with air-core photonic bandgap fiber

Author information +
History +

Abstract

The propagation loss of a fiber can be increased by coupling core mode and surface mode which will deteriorate the performance of photonic bandgap fiber (PBGF). In this paper, we presented an air-core PBGF for gas sensing applications. By designing Λ = 2.63 µm, d = 0.95 Λ, and Rcore= 1.13 Λ, where Λ is the distance between the adjacent air holes, the fiber was single-mode, no surface mode was supported with fiber, and more than 90% of the optical power was confined in the core. Furthermore, with optimizing the fiber structural parameters, at wavelength of λ = 1.55 µm that is in acetylene gas absorption line, significant relative sensitivity of 92.5%, and acceptable confinement loss of 0.09 dB/m, were simultaneously achieved.

Keywords

gas sensor / photonic bandgap fiber (PBGF) / sensitivity / surface modes / air core radius / confinement loss

Cite this article

Download citation ▾
Saeed OLYAEE, Hassan ARMAN. Improved gas sensor with air-core photonic bandgap fiber. Front. Optoelectron., 2015, 8(3): 314‒318 https://doi.org/10.1007/s12200-015-0447-5

References

[1]
Lopez-Higuera J M. Handbook of Optical Fibre Sensing Technology. New York: John Wiley & Sons, 2002
[2]
Olyaee S, Naraghi A, Ahmadi V. High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Optik (Stuttgart), 2014, 125(1): 596–600
CrossRef Google scholar
[3]
Olyaee S, Naraghi A. Design and optimization of index-guiding photonic crystal fiber gas sensor. Photonic Sensors, 2013, 3(2): 131–136
CrossRef Google scholar
[4]
Naraghi A, Olyaee S, Najibi A, Leitgeb E. Photonic crystal fiber gas sensor for using in optical network protection systems. In: Proceedings of the 18th European Conference on Network and Optical Communications and the 8th Conference on Optical Cabling and Infrastructure, 2013
[5]
Wolfbeis O S. Fiber-Optic Chemical and Biosensors. Boca Raton, FL: CRC Press, 1991
[6]
Hoo Y L, Jin W, Ho H L, Wang D N. Evanescent-wave gas sensing using microstructure fiber. Optical Engineering (Redondo Beach, Calif.), 2002, 41(1): 8–9
CrossRef Google scholar
[7]
Lægsgaar J, Mortensen N A, Riishede J, Bjarklev A. Material effects in air-guiding photonic bandgap fibers. Journal of the Optical Society of America B, Optical Physics, 2003, 20(10): 2046–2051
CrossRef Google scholar
[8]
Humbert G, Knight J, Bouwmans G, Russell P, Williams D, Roberts P, Mangan B. Hollow core photonic crystal fibers for beam delivery. Optics Express, 2004, 12(8): 1477–1484
CrossRef Pubmed Google scholar
[9]
Ritari T. Novel sensor and telecommunication applications of photonic crystal fibers. Dissertation for the Doctoral Degree. Finland: Helsinki University, 2006
[10]
Smolka S, Barth M, Benson O. Highly efficient fluorescence sensing with hollow core photonic crystal fibers. Optics Express, 2007, 15(20): 12783–12791
CrossRef Pubmed Google scholar
[11]
Hoo Y L, Jin W, Ho H L, Wang D N. Measurement of gas diffusion coefficient using photonic crystal fiber. IEEE Photonics Technology Letters, 2003, 15(10): 1434–1436
CrossRef Google scholar
[12]
Hoo Y L, Jin W, Ju J, Ho H L. Numerical investigation of a depressed-index core photonic crystal fiber for gas sensing. Sensors and Actuators B: Chemical, 2009, 139(2): 460–465
CrossRef Google scholar
[13]
Yu X, Zhang Y, Kwok Y C, Shum P. Highly sensitive photonic crystal based absorption spectroscopy. Sensors Actuators, B: Chemical, 2010, 145(1): 110–113
[14]
Park J, Lee S, Kim S, Oh K. Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Optics Express, 2011, 19(3): 1921–1929
CrossRef Pubmed Google scholar
[15]
Hu J, Menyuk C R. Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses. Optics Express, 2007, 15(2): 339–349
CrossRef Pubmed Google scholar
[16]
Stewart G, Norris J, Clark D F, Culshaw B. Evanescent-wave chemical sensors a theoretical evaluation. International Journal of Optoelectron, 1991, 6(3): 227–238
[17]
Ritari T, Tuminen J, Ludvigsen H, Petersen J C, Sørensen T, Hansen T P, Simonsen H R. Gas sensing using air-guiding photonic bandgap fiber. Optics Express, 2004, 12(17): 4080–4087
CrossRef Google scholar
[18]
Saitoh K, Koshiba M. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Optics Express, 2003, 11(23): 3100–3109
CrossRef Pubmed Google scholar
[19]
Saitoh K, Koshiba M. Photonic bandgap fibers with high birefringence. IEEE Photonics Technology Letters, 2002, 14(9): 1291–1293
CrossRef Google scholar

Acknowledgments

This research was based on work done at Nano-Photonics and Optoelectronics Research Laboratory (NORLab) at Shahid Rajaee Teacher Training University, Tehran, Iran. The authors would like to thank anonymous reviewers for their helpful and constructive comments and recommendations, which considerably improved the contents and the presentation of the manuscript. They also would like to thank Iran Nanotechnology Initiative Council (INIC) for financial support.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(588 KB)

Accesses

Citations

Detail

Sections
Recommended

/