Simulation study on the active layer thickness and the interface of a-IGZO-TFT with double active layers
Xiaoyue LI, Sheng YIN, Dong XU
Simulation study on the active layer thickness and the interface of a-IGZO-TFT with double active layers
In this paper, ATLAS 2D device simulator of SILVACO was used for device simulation of inverted-staggered thin film transistor using amorphous indium gallium zinc oxide as active layer (a-IGZO-TFT) with double active layers, based on the density of states (DOS) model of amorphous material. The change of device performance induced by the thickness variation of each active layer was studied, and the interface between double active layers was analyzed. The best performance was found when the interface was near the edge of the channel, by optimizing the thickness of each active layers, the high performance device of threshold voltage (Vth) = −0.89 V, sub-threshold swing (SS)= 0.27, on/off current ratio (ION/IOFF) = 6.98 × 1014 was obtained.
amorphous indium gallium zinc oxide (a-IGZO) / double active layers / interface / density of states (DOS) / ATLAS
[1] |
Liu P T, Chou Y T, Teng L F, Li F H, Fuh C S, Shieh H P D. Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO:N bilayer stack channel layers. IEEE Electron Device Letters, 2011, 32(10): 1397−1399
CrossRef
Google scholar
|
[2] |
Marrs M A, Moyer C D, Bawolek E J, Cordova R J, Trujillo J, Raupp G B, Vogt B D. Control of threshold voltage and saturation mobility using dual-active-layer device based on amorphous mixed metal–oxide–semiconductor on flexible plastic substrates. IEEE Transactions on Electron Devices, 2011, 58(10): 3428−3434
CrossRef
Google scholar
|
[3] |
Kim S I, Kim C J. High performance oxide thin film transistors with double active layers. In: Proceedings of IEEE International Electron Devices Meeting, 2008
|
[4] |
Kim S I, Park J S, Kim C J, Park J C, Song I, Park Y S. High reliable and manufacturable gallium indium zinc oxide thin-film transistors using the double layers as an active layer. In: Journal of the Electrochemical Society, 2009, 156(3): H184−H187
CrossRef
Google scholar
|
[5] |
Maeng W J, Park J S, Kim H S, Lee K H, Park K B, Son K S, Kim T S, Kim E S, Ham Y N, Ryu M, Lee S Y. Photo and thermal stability enhancement of amorphous Hf-In-Zn-O thin-film transistors by the modulation of back channel composition. Applied Physics Letters, 2011, 98(7): 073503
CrossRef
Google scholar
|
[6] |
Kim C E, Moon P. Density-of-states modeling of solution-processed InGaZnO thin-film transistors. IEEE Electron Device Letters, 2010, 31(10): 1131−1133
CrossRef
Google scholar
|
[7] |
Kim Y, Bae M, Kim W, Kong D, Jung H K, Kim H, Kim S, Kim D M, Kim D H. Amorphous InGaZnO thin-film transistors—part I: complete extraction of density of states over the full subband-gap energy range. IEEE Transactions on Electron Devices, 2012, 59(10): 2689−2698
CrossRef
Google scholar
|
[8] |
Fung T C, Chuang C S, Chen C, Abe K, Cottle R, Townsend M, Kumomi H, Kanicki J. Two-dimensional numerical simulation of radio frequency sputter amorphous In-Ga-Zn-O thin-film transistors. Journal of Applied Physics, 2009, 106(8): 084511
CrossRef
Google scholar
|
[9] |
Bae H, Choi H, Oh S, Kim D H, Bae J, Kim J, Kim Y H, Kim D M. Extraction technique for intrinsic subgap DOS in a-IGZO TFTs by de-embedding the parasitic capacitance through the photonic C–V measurement. IEEE Electron Device Letters, 2013, 34(1): 57−59
CrossRef
Google scholar
|
[10] |
Bae M, Lee K M, Cho E S, Kwon H I, Kim D M, Kim D H. Analytical current and capacitance models for amorphous indium-gallium-zinc-oxide thin-film transistors. IEEE Transactions on Electron Devices, 2013, 60(10): 3465−3473
CrossRef
Google scholar
|
[11] |
Kim Y, Kim S, Kim W, Bae M, Jeong H K, Kong D, Choi S, Kim D M, Kim D H. Amorphous InGaZnO thin-film transistors—part II: modeling and simulation of negative bias illumination stress-induced instability. IEEE Transactions on Electron Devices, 2012, 59(10): 2699−2706
CrossRef
Google scholar
|
[12] |
Bae M, Kim Y, Kong D, Jeong H K, Kim W, Kim J, Hur I, Kim D M, Kim D H. Analytical models for drain current and gate capacitance in amorphous InGaZnO thin-film transistors with effective carrier density. IEEE Electron Device Letters, 2011, 32(11): 1546−1548
CrossRef
Google scholar
|
[13] |
Kim H S, Park J S, Jeong H K, Son K S, Kim T S, Seon J B, Lee E, Chung J G, Kim D H, Ryu M, Lee S Y. Density of states-based design of metal oxide thin-film transistors for high mobility and superior photostability. Applied Materials Interfaces, 2012, 4(10): 5416−5421
CrossRef
Pubmed
Google scholar
|
[14] |
Oldham W G, Milnes A G. Interface states in abrupt semiconductor heterojunctions. Solid-State Electronics, 1964, 7(2): 153−165
CrossRef
Google scholar
|
/
〈 | 〉 |