Simulation study on the active layer thickness and the interface of a-IGZO-TFT with double active layers

Xiaoyue LI, Sheng YIN, Dong XU

PDF(269 KB)
PDF(269 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (4) : 445-450. DOI: 10.1007/s12200-014-0451-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Simulation study on the active layer thickness and the interface of a-IGZO-TFT with double active layers

Author information +
History +

Abstract

In this paper, ATLAS 2D device simulator of SILVACO was used for device simulation of inverted-staggered thin film transistor using amorphous indium gallium zinc oxide as active layer (a-IGZO-TFT) with double active layers, based on the density of states (DOS) model of amorphous material. The change of device performance induced by the thickness variation of each active layer was studied, and the interface between double active layers was analyzed. The best performance was found when the interface was near the edge of the channel, by optimizing the thickness of each active layers, the high performance device of threshold voltage (Vth) = −0.89 V, sub-threshold swing (SS)= 0.27, on/off current ratio (ION/IOFF) = 6.98 × 1014 was obtained.

Keywords

amorphous indium gallium zinc oxide (a-IGZO) / double active layers / interface / density of states (DOS) / ATLAS

Cite this article

Download citation ▾
Xiaoyue LI, Sheng YIN, Dong XU. Simulation study on the active layer thickness and the interface of a-IGZO-TFT with double active layers. Front. Optoelectron., 2015, 8(4): 445‒450 https://doi.org/10.1007/s12200-014-0451-1

References

[1]
Liu P T, Chou Y T, Teng L F, Li F H, Fuh C S, Shieh H P D. Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO:N bilayer stack channel layers. IEEE Electron Device Letters, 2011, 32(10): 1397−1399
CrossRef Google scholar
[2]
Marrs M A, Moyer C D, Bawolek E J, Cordova R J, Trujillo J, Raupp G B, Vogt B D. Control of threshold voltage and saturation mobility using dual-active-layer device based on amorphous mixed metal–oxide–semiconductor on flexible plastic substrates. IEEE Transactions on Electron Devices, 2011, 58(10): 3428−3434
CrossRef Google scholar
[3]
Kim S I, Kim C J. High performance oxide thin film transistors with double active layers. In: Proceedings of IEEE International Electron Devices Meeting, 2008
[4]
Kim S I, Park J S, Kim C J, Park J C, Song I, Park Y S. High reliable and manufacturable gallium indium zinc oxide thin-film transistors using the double layers as an active layer. In: Journal of the Electrochemical Society, 2009, 156(3): H184−H187
CrossRef Google scholar
[5]
Maeng W J, Park J S, Kim H S, Lee K H, Park K B, Son K S, Kim T S, Kim E S, Ham Y N, Ryu M, Lee S Y. Photo and thermal stability enhancement of amorphous Hf-In-Zn-O thin-film transistors by the modulation of back channel composition. Applied Physics Letters, 2011, 98(7): 073503
CrossRef Google scholar
[6]
Kim C E, Moon P. Density-of-states modeling of solution-processed InGaZnO thin-film transistors. IEEE Electron Device Letters, 2010, 31(10): 1131−1133
CrossRef Google scholar
[7]
Kim Y, Bae M, Kim W, Kong D, Jung H K, Kim H, Kim S, Kim D M, Kim D H. Amorphous InGaZnO thin-film transistors—part I: complete extraction of density of states over the full subband-gap energy range. IEEE Transactions on Electron Devices, 2012, 59(10): 2689−2698
CrossRef Google scholar
[8]
Fung T C, Chuang C S, Chen C, Abe K, Cottle R, Townsend M, Kumomi H, Kanicki J. Two-dimensional numerical simulation of radio frequency sputter amorphous In-Ga-Zn-O thin-film transistors. Journal of Applied Physics, 2009, 106(8): 084511
CrossRef Google scholar
[9]
Bae H, Choi H, Oh S, Kim D H, Bae J, Kim J, Kim Y H, Kim D M. Extraction technique for intrinsic subgap DOS in a-IGZO TFTs by de-embedding the parasitic capacitance through the photonic C–V measurement. IEEE Electron Device Letters, 2013, 34(1): 57−59
CrossRef Google scholar
[10]
Bae M, Lee K M, Cho E S, Kwon H I, Kim D M, Kim D H. Analytical current and capacitance models for amorphous indium-gallium-zinc-oxide thin-film transistors. IEEE Transactions on Electron Devices, 2013, 60(10): 3465−3473
CrossRef Google scholar
[11]
Kim Y, Kim S, Kim W, Bae M, Jeong H K, Kong D, Choi S, Kim D M, Kim D H. Amorphous InGaZnO thin-film transistors—part II: modeling and simulation of negative bias illumination stress-induced instability. IEEE Transactions on Electron Devices, 2012, 59(10): 2699−2706
CrossRef Google scholar
[12]
Bae M, Kim Y, Kong D, Jeong H K, Kim W, Kim J, Hur I, Kim D M, Kim D H. Analytical models for drain current and gate capacitance in amorphous InGaZnO thin-film transistors with effective carrier density. IEEE Electron Device Letters, 2011, 32(11): 1546−1548
CrossRef Google scholar
[13]
Kim H S, Park J S, Jeong H K, Son K S, Kim T S, Seon J B, Lee E, Chung J G, Kim D H, Ryu M, Lee S Y. Density of states-based design of metal oxide thin-film transistors for high mobility and superior photostability. Applied Materials Interfaces, 2012, 4(10): 5416−5421
CrossRef Pubmed Google scholar
[14]
Oldham W G, Milnes A G. Interface states in abrupt semiconductor heterojunctions. Solid-State Electronics, 1964, 7(2): 153−165
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(269 KB)

Accesses

Citations

Detail

Sections
Recommended

/