Carrier recovery in coherent receiver of optical orthogonal frequency division multiplexing system

Changyuan YU, Pooi-Yuen KAM, Shengjiao CAO

PDF(1552 KB)
PDF(1552 KB)
Front. Optoelectron. ›› 2014, Vol. 7 ›› Issue (3) : 348-358. DOI: 10.1007/s12200-014-0449-8
REVIEW ARTICLE
REVIEW ARTICLE

Carrier recovery in coherent receiver of optical orthogonal frequency division multiplexing system

Author information +
History +

Abstract

In this paper, we reviewed our common phase error (CPE) and intercarrier interference (ICI) compensation methods for coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. We first presented a unified CPE estimation framework combining decision-aided (DA), pilot-aided (PA) and decision feedback (DF) algorithms. The DA method is used to estimate the CPE of the current OFDM symbol based on the decision statistics of the previous symbol. DA+ PA helps increase the phase noise tolerance of DA and reduce the overhead of PA, while DA+ DF reduces the overhead to zero, achieving best performance with one more step of estimation, compensation and demodulation. We also described a modified time-domain blind intercarrier interference (BL-ICI) mitigation algorithm over non-constant amplitude formats. The new algorithm is derived from the BL-ICI algorithm over constant amplitude format for wireless networks. A new power estimation scheme was proposed for the BL-ICI algorithm to adapt to non-constant amplitude format. It has the same order of complexity with frequency domain decision-aided ICI (DA-ICI) compensation method and does not suffer from symbol decision errors. The effectiveness of both CPE and ICI compensation algorithms were demonstrated in a simulated 56-Gbit/s CO-OFDM system with various modulation formats.

Keywords

linear phase noise / coherent optical orthogonal frequency division multiplexing (CO-OFDM) / common phase error (CPE) / decision-aided (DA) / intercarrier interference (ICI)

Cite this article

Download citation ▾
Changyuan YU, Pooi-Yuen KAM, Shengjiao CAO. Carrier recovery in coherent receiver of optical orthogonal frequency division multiplexing system. Front. Optoelectron., 2014, 7(3): 348‒358 https://doi.org/10.1007/s12200-014-0449-8

References

[1]
Shieh W, Djordjevic I. OFDM for Optical Communications. Burlington: Academic Press, 2009
[2]
Shieh W, Yang Q, Ma Y. 107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing. Optics Express, 2008, 16(9): 637<?Pub Caret?>8-6386
CrossRef Pubmed Google scholar
[3]
Hobayash T, Sano A, Yamada E. Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation. Electronics Letters, 2008, 44(3): 225-226
CrossRef Google scholar
[4]
Jansen S L, Morita I, Tanaka H. 10 × 121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF. In: Proceedings of Optical Fiber Communication Conference, 2008
[5]
Yi X W, Fontaine N K, Scott R P, Yoo S. Tb/s coherent optical OFDM systems enabled by optical frequency combs. Journal of Lightwave Technology, 2010, 28(14): 2054-2061
CrossRef Google scholar
[6]
Hillerkuss D, Schellinger T, Schmogrow R, Winter M, Vallaitis T, Bonk R, Marculescu A, Li J, Dreschmann M, Meyer J, Ben Ezra S, Narkiss N, Nebendahl B, Parmigiani F, Petropoulos P, Resan B, Weingarten K, Ellermeyer T, Lutz J, Moller M, Huebner M, Becker J, Koos C, Freude W, Leuthold J. Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s. In: Proceedings of Optical Fiber Communication Conference, 2010
[7]
Ma Y R, Yang Q, Tang Y, Chen S M, Shieh W. 1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access. Journal of Lightwave Technology, 2010, 28(4): 308-315
CrossRef Google scholar
[8]
Yu J, Dong Z, Xiao X, Xia Y. Generation, transmission and coherent detection of 11.2 Tb/s (112×100Gb/s) single source optical OFDM superchannel. In: Proceedings of Optical Fiber Communication Conference, 2011
[9]
Noe R. PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I & Q baseband processing. IEEE Photonics Technology Letters, 2005, 17(4): 887-889
CrossRef Google scholar
[10]
Pfau T, Hoffmann S, Peveling R, Bhandare S, Ibrahim S K, Adamczyk O, Porrmann M, Noe R, Ac Y. First real-time data recovery for synchronous QPSK transmission with standard DFB lasers. IEEE Photonics Technology Letters, 2006, 18(18): 1907-1909
CrossRef Google scholar
[11]
Jansen S L, Morita I, Takeda N, Tanaka H. 20-Gb/s OFDM transmission over 4160-km SSMF enabled by RF-pilot tone phase noise compensation. In: Proceedings of Optical Fiber Communication Conference, 2007
[12]
Jansen S L, Morita I, Schenk T, Takeda N, Tanaka H. Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF. Journal of Lightwave Technology, 2008, 26(1): 6-15
CrossRef Google scholar
[13]
Randel S, Adhikari S, Jansen S. Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems. IEEE Photonics Technology Letters, 2010, 22(17): 1288-1290
CrossRef Google scholar
[14]
Yi X, Shieh W, Tang Y. Phase estimation for coherent optical OFDM. IEEE Photonics Technology Letters, 2007, 19(12): 919-921
CrossRef Google scholar
[15]
Shieh W. Maximum-likelihood phase estimation and channel estimation for coherent optical OFDM. IEEE Photonics Technology Letters, 2008, 20(8): 605-607
CrossRef Google scholar
[16]
Mousa-Pasandi M E, Plant D V. Data-aided adaptive weighted channel equalizer for coherent optical OFDM. Optics Express, 2010, 18(4): 3919-3927
CrossRef Pubmed Google scholar
[17]
Mousa-Pasandi M E, Plant D V. Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM. Optics Express, 2010, 18(20): 20651-20660
CrossRef Pubmed Google scholar
[18]
Petrovic D, Rave W, Fettweis G. Phase noise suppression in OFDM including intercarrier interference. In: Proceedings of International OFDM Workshop (InOWo), 2003
[19]
Petrovic D, Rave W, Fettweis G. Intercarrier interference due to phase noise in OFDM - estimation and suppression. In: Proceedings of Vehicular Technology Conference (VTC), 2004
[20]
Lee M, Lim S, Yang K. Blind compensation for phase noise in OFDM systems over constant modulus modulation. IEEE Transactions on Communications, 2012, 60(3): 620-625
CrossRef Google scholar
[21]
Yang C, Yang F, Wang Z. Orthogonal basis expansion-based phase noise estimation and suppression for CO-OFDM systems. IEEE Photonics Technology Letters, 2010, 22(1): 51-53
CrossRef Google scholar
[22]
Chung W. A matched filtering approach for phase noise suppression in CO-OFDM systems. IEEE Photonics Technology Letters, 2010, 22(24): 1802-1804
CrossRef Google scholar
[23]
Lin C T, Wei C C, Chao M I. Phase noise suppression of optical OFDM signals in 60-GHz RoF transmission system. Optics Express, 2011, 19(11): 10423-10428
CrossRef Pubmed Google scholar
[24]
Zhao C, Yang C, Yang F, Zhang F, Chen Z. A CO-OFDM system with almost blind phase noise suppression. IEEE Photonics Technology Letters, 2013, 25(17): 1723-1726
CrossRef Google scholar
[25]
Cao S, Kam P Y, Yu C. Decision-aided carrier phase estimation for coherent optical OFDM. In: Proceedings of Opto-Electronics and Communications Conference (OECC), 2011
[26]
Cao S, Kam P Y, Yu C. Decision-aided, pilot-aided, decision-feedback phase estimation for coherent optical OFDM systems. IEEE Photonics Technology Letters, 2012, 24(22): 2067-2069
CrossRef Google scholar
[27]
Cao S, Kam P, Yu C. Time-domain blind ICI mitigation for non-constant modulus format in CO-OFDM. IEEE Photonics Technology Letters, 2013, 25(24): 2490-2493
CrossRef Google scholar
[28]
Zhang S, Kam P Y, Chen J, Yu C. Decision-aided maximum likelihood detection in coherent optical phase-shift-keying system. Optics Express, 2009, 17(2): 703-715
CrossRef Pubmed Google scholar
[29]
Zhang S, Kam P Y, Yu C, Chen J. Decision-aided carrier phase estimation for coherent optical communications. Journal of Lightwave Technology, 2010, 28(11): 1597-1607
CrossRef Google scholar
[30]
Zhuge Q, Morsy-Osman M H, Plant D V. Low overhead intra-symbol carrier phase recovery for reduced-guard-interval CO-OFDM. Journal of Lightwave Technology, 2013, 31(8): 1158-1169
[31]
Zhuge Q, Chen C, Plant D V. Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission. Optics Express, 2011, 19(5): 4472-4484
[32]
Liu X, Buchali F. Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM. Optics Express, 2008, 16(26): 21944-21957
CrossRef Pubmed Google scholar

Acknowledgements

The authors would like to thank the support of AcRF Tier 2 Grant MOE2013-T2-2-145 from MOE Singapore.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1552 KB)

Accesses

Citations

Detail

Sections
Recommended

/