Tailoring electromagnetic responses in terahertz superconducting metamaterials
Superconducting terahertz metamaterials have attracted significant interest due to low loss, efficient resonance switching and large-range frequency tunability. The super conductivity in the metamaterials dramatically reduces ohmic loss and absorption to levels suitable for novel devices over a broad range of electromagnetic spectrum. Most metamaterials utilize subwavelength-scale split-ring resonators as unit building blocks, which are proved to support fundamental inductive-capacitive resonance, to achieve unique resonance performance. We presented a review of terahertz superconducting metamaterials and their implementation in multifunctional devices. We began with the recent development of superconducting metamaterials and their potential applications in controlling and manipulating terahertz waves. Then we explored the tuning behaviors of resonance properties in several typical, actively controllable metamaterials through integrating active components. Finally, the ultrafast dynamic nonlinear response to high intensity terahertz field in the superconducting metamaterials was presented.
superconducting metamaterial / terahertz, active metamaterial
1 | Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969 |
2 | Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537 |
3 | Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79 |
4 | Zhang S, Genov D A, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Physical Review Letters, 2008, 101(4): 047401 |
5 | Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325(5947): 1513–1515 |
6 | Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980 |
7 | Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782 |
8 | Zheludev N I. Applied physics. The road ahead for metamaterials. Science, 2010, 328(5978): 582–583 |
9 | Ricci M, Orloff N, Anlage S M. Superconducting metamaterials. Applied Physics Letters, 2005, 87(3): 034102 |
10 | Fedotov V A, Tsiatmas A, Shi J H, Buckingham R, de Groot P, Chen Y, Wang S, Zheludev N I. Temperature control of Fano resonances and transmission in superconducting metamaterials. Optics Express, 2010, 18(9): 9015–9019 |
11 | Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105 |
12 | Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33 |
13 | O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008, 16(3): 1786–1795 |
14 | Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing. Applied Physics Letters, 2007, 91(18): 184102 |
15 | Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(2): 143–171 |
16 | Gu J, Singh R, Tian Z, Cao W, Xing Q, He M, Zhang J W, Han J, Chen H T, Zhang W. Terahertz superconductor metamaterial. Applied Physics Letters, 2010, 97(7): 071102 |
17 | Singh R, Tian Z, Han J, Rockstuhl C, Gu J, Zhang W. Cryogenic temperatures as a path toward high-Q terahertz metamaterials. Applied Physics Letters, 2010, 96(7): 071114 |
18 | Singh R, Smirnova E, Taylor A J, O’Hara J F, Zhang W. Optically thin terahertz metamaterials. Optics Express, 2008, 16(9): 6537–6543 |
19 | Singh R, Azad A K, O’Hara J F, Taylor A J, Zhang W. Effect of metal permittivity on resonant properties of terahertz metamaterials. Optics Letters, 2008, 33(13): 1506–1508 |
20 | Wilke I, Khazan M, Rieck C T, Kuzel P, Kaiser T, Jaekel C, Kurz H. Terahertz surface resistance of high temperature superconducting thin films. Journal of Applied Physics, 2000, 87(6): 2984–2988 |
21 | Jin B, Zhang C, Engelbrecht S, Pimenov A, Wu J, Xu Q, Cao C, Chen J, Xu W, Kang L, Wu P. Low loss and magnetic field-tunable superconducting terahertz metamaterial. Optics Express, 2010, 18(16): 17504–17509 |
22 | Azad A K, Dai J, Zhang W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Optics Letters, 2006, 31(5): 634–636 |
23 | Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084 |
24 | Chen H T, Yang H, Singh R, O’Hara J F, Azad A K, Trugman S A, Jia Q X, Taylor A J. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Physical Review Letters, 2010, 105(24): 247402 |
25 | London F, London H. The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1935, 149(866): 71–88 |
26 | Ricci M C, Anlage S M. Single superconducting split-ring resonator electrodynamics. Applied Physics Letters, 2006, 88(26): 264102 |
27 | Zhang C H, Wu J B, Jin B B, Ji Z M, Kang L, Xu W W, Chen J, Tonouchi M, Wu P H. Low-loss terahertz metamaterial from superconducting niobium nitride films. Optics Express, 2012, 20(1): 42–47 |
28 | Wu J, Jin B, Xue Y, Zhang C, Dai H, Zhang L, Cao C, Kang L, Xu W, Chen J, Wu P. Tuning of superconducting niobium nitride terahertz metamaterials. Optics Express, 2011, 19(13): 12021–12026 |
29 | Kang L, Jin B B, Liu X Y, Jia X Q, Chen J, Ji Z M, Xu W W, Wu P H, Mi S B, Pimenov A, Wu Y J, Wang B G. Suppression of superconductivity in epitaxial NbN ultrathin films. Journal of Applied Physics, 2011, 109(3): 033908 |
30 | Purcell E M, Morin D J. Electricity and Magnetism. Cambridge: Cambridge University Press, 2013 |
31 | Singh R, Xiong J, Azad A K, Yang H, Trugman S A, Jia Q X, Taylor A J, Chen H T. Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials. Nanophotonics, 2012, 1(1): 117–123 |
32 | Coffey M W, Clem J R. Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors. Physical Review Letters, 1991, 67(3): 386–389 |
33 | Ricci M C, Xu H, Prozorov R, Zhuravel A P, Ustinov A V, Anlage S M. Tunability of superconducting metamaterials. IEEE Transactions on Applied Superconductivity, 2007 17(2): 918–921 |
34 | Han J, Lakhtakia A, Tian Z, Lu X, Zhang W. Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet. Optics Letters, 2009, 34(9): 1465–1467 |
35 | Chen H T, Lu H, Azad A K, Averitt R D, Gossard A C, Trugman S A, O’Hara J F, Taylor A J. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Optics Express, 2008, 16(11): 7641–7648 |
36 | Tian Z, Singh R, Han J, Gu J, Xing Q, Wu J, Zhang W. Terahertz superconducting plasmonic hole array. Optics Letters, 2010, 35(21): 3586–3588 |
37 | Wu J, Dai H, Wang H, Jin B, Jia T, Zhang C, Cao C, Chen J, Kang L, Xu W, Wu P. Extraordinary terahertz transmission in superconducting subwavelength hole array. Optics Express, 2011, 19(2): 1101–1106 |
38 | Fedotov V A, Tsiatmas A, Shi J H, Buckingham R, de Groot P, Chen Y, Wang S, Zheludev N I. Temperature control of Fano resonances and transmission in superconducting metamaterials. Optics Express, 2010, 18(9): 9015–9019 |
39 | Wu J, Jin B, Wan J, Liang L, Zhang Y, Jia T, Cao C, Kang L, Xu W, Chen J, Wu P. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Applied Physics Letters, 2011, 99(16): 161113 |
40 | Zhang C, Jin B, Han J, Kawayama I, Murakami H, Wu J, Kang L, Chen J, Wu P, Tonouchi M. Terahertz nonlinear superconducting metamaterials. Applied Physics Letters, 2013, 102(8): 081121 |
41 | Zhang C, Jin B, Han J, Kawayama I, Murakami H, Jia X, Liang L, Kang L, Chen J, Wu P, Tonouchi M. Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses. New Journal of Physics, 2013, 15(5): 055017 |
42 | Grady N K, Perkins B G Jr, Hwang H Y, Brandt N C, Torchinsky D, Singh R, Yan L, Trugman D, Trugman S A, Jia Q X, Taylor A J, Nelson K A, Chen H T. Nonlinear high-temperature superconducting terahertz metamaterials. New Journal of Physics, 2013, 15(10): 105016 |
43 | Matsunaga R, Shimano R. Nonequilibrium BCS state dynamics induced by intense terahertz pulses in a superconducting NbN film. Physical Review Letters, 2012, 109(18): 187002 |
44 | Schurig D, Mock J J, Smith D R. Electric-field-coupled resonators for negative permittivity metamaterials. Applied Physics Letters, 2006, 88(4): 041109 |
/
〈 | 〉 |