Tailoring electromagnetic responses in terahertz superconducting metamaterials

Xiaoling ZHANG,Jianqiang GU(),Jiaguang HAN(),Weili ZHANG

PDF(1922 KB)
PDF(1922 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (1) : 44-56. DOI: 10.1007/s12200-014-0439-x
REVIEW ARTICLE
REVIEW ARTICLE

Tailoring electromagnetic responses in terahertz superconducting metamaterials

  • Xiaoling ZHANG,Jianqiang GU(),Jiaguang HAN(),Weili ZHANG
Author information +
History +

Abstract

Superconducting terahertz metamaterials have attracted significant interest due to low loss, efficient resonance switching and large-range frequency tunability. The super conductivity in the metamaterials dramatically reduces ohmic loss and absorption to levels suitable for novel devices over a broad range of electromagnetic spectrum. Most metamaterials utilize subwavelength-scale split-ring resonators as unit building blocks, which are proved to support fundamental inductive-capacitive resonance, to achieve unique resonance performance. We presented a review of terahertz superconducting metamaterials and their implementation in multifunctional devices. We began with the recent development of superconducting metamaterials and their potential applications in controlling and manipulating terahertz waves. Then we explored the tuning behaviors of resonance properties in several typical, actively controllable metamaterials through integrating active components. Finally, the ultrafast dynamic nonlinear response to high intensity terahertz field in the superconducting metamaterials was presented.

Keywords

superconducting metamaterial / terahertz, active metamaterial

Cite this article

Download citation ▾
Xiaoling ZHANG,Jianqiang GU,Jiaguang HAN,Weili ZHANG. Tailoring electromagnetic responses in terahertz superconducting metamaterials. Front. Optoelectron., 2015, 8(1): 44‒56 https://doi.org/10.1007/s12200-014-0439-x

References

1 Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
2 Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537
3 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
4 Zhang S, Genov D A, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Physical Review Letters, 2008, 101(4): 047401
5 Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325(5947): 1513–1515
6 Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
7 Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782
8 Zheludev N I. Applied physics. The road ahead for metamaterials. Science, 2010, 328(5978): 582–583
9 Ricci M, Orloff N, Anlage S M. Superconducting metamaterials. Applied Physics Letters, 2005, 87(3): 034102
10 Fedotov V A, Tsiatmas A, Shi J H, Buckingham R, de Groot P, Chen Y, Wang S, Zheludev N I. Temperature control of Fano resonances and transmission in superconducting metamaterials. Optics Express, 2010, 18(9): 9015–9019
11 Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
12 Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33
13 O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008, 16(3): 1786–1795
14 Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing. Applied Physics Letters, 2007, 91(18): 184102
15 Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(2): 143–171
16 Gu J, Singh R, Tian Z, Cao W, Xing Q, He M, Zhang J W, Han J, Chen H T, Zhang W. Terahertz superconductor metamaterial. Applied Physics Letters, 2010, 97(7): 071102
17 Singh R, Tian Z, Han J, Rockstuhl C, Gu J, Zhang W. Cryogenic temperatures as a path toward high-Q terahertz metamaterials. Applied Physics Letters, 2010, 96(7): 071114
18 Singh R, Smirnova E, Taylor A J, O’Hara J F, Zhang W. Optically thin terahertz metamaterials. Optics Express, 2008, 16(9): 6537–6543
19 Singh R, Azad A K, O’Hara J F, Taylor A J, Zhang W. Effect of metal permittivity on resonant properties of terahertz metamaterials. Optics Letters, 2008, 33(13): 1506–1508
20 Wilke I, Khazan M, Rieck C T, Kuzel P, Kaiser T, Jaekel C, Kurz H. Terahertz surface resistance of high temperature superconducting thin films. Journal of Applied Physics, 2000, 87(6): 2984–2988
21 Jin B, Zhang C, Engelbrecht S, Pimenov A, Wu J, Xu Q, Cao C, Chen J, Xu W, Kang L, Wu P. Low loss and magnetic field-tunable superconducting terahertz metamaterial. Optics Express, 2010, 18(16): 17504–17509
22 Azad A K, Dai J, Zhang W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Optics Letters, 2006, 31(5): 634–636
23 Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
24 Chen H T, Yang H, Singh R, O’Hara J F, Azad A K, Trugman S A, Jia Q X, Taylor A J. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Physical Review Letters, 2010, 105(24): 247402
25 London F, London H. The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1935, 149(866): 71–88
26 Ricci M C, Anlage S M. Single superconducting split-ring resonator electrodynamics. Applied Physics Letters, 2006, 88(26): 264102
27 Zhang C H, Wu J B, Jin B B, Ji Z M, Kang L, Xu W W, Chen J, Tonouchi M, Wu P H. Low-loss terahertz metamaterial from superconducting niobium nitride films. Optics Express, 2012, 20(1): 42–47
28 Wu J, Jin B, Xue Y, Zhang C, Dai H, Zhang L, Cao C, Kang L, Xu W, Chen J, Wu P. Tuning of superconducting niobium nitride terahertz metamaterials. Optics Express, 2011, 19(13): 12021–12026
29 Kang L, Jin B B, Liu X Y, Jia X Q, Chen J, Ji Z M, Xu W W, Wu P H, Mi S B, Pimenov A, Wu Y J, Wang B G. Suppression of superconductivity in epitaxial NbN ultrathin films. Journal of Applied Physics, 2011, 109(3): 033908
30 Purcell E M, Morin D J. Electricity and Magnetism. Cambridge: Cambridge University Press, 2013
31 Singh R, Xiong J, Azad A K, Yang H, Trugman S A, Jia Q X, Taylor A J, Chen H T. Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials. Nanophotonics, 2012, 1(1): 117–123
32 Coffey M W, Clem J R. Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors. Physical Review Letters, 1991, 67(3): 386–389
33 Ricci M C, Xu H, Prozorov R, Zhuravel A P, Ustinov A V, Anlage S M. Tunability of superconducting metamaterials. IEEE Transactions on Applied Superconductivity, 2007 17(2): 918–921
34 Han J, Lakhtakia A, Tian Z, Lu X, Zhang W. Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet. Optics Letters, 2009, 34(9): 1465–1467
35 Chen H T, Lu H, Azad A K, Averitt R D, Gossard A C, Trugman S A, O’Hara J F, Taylor A J. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Optics Express, 2008, 16(11): 7641–7648
36 Tian Z, Singh R, Han J, Gu J, Xing Q, Wu J, Zhang W. Terahertz superconducting plasmonic hole array. Optics Letters, 2010, 35(21): 3586–3588
37 Wu J, Dai H, Wang H, Jin B, Jia T, Zhang C, Cao C, Chen J, Kang L, Xu W, Wu P. Extraordinary terahertz transmission in superconducting subwavelength hole array. Optics Express, 2011, 19(2): 1101–1106
38 Fedotov V A, Tsiatmas A, Shi J H, Buckingham R, de Groot P, Chen Y, Wang S, Zheludev N I. Temperature control of Fano resonances and transmission in superconducting metamaterials. Optics Express, 2010, 18(9): 9015–9019
39 Wu J, Jin B, Wan J, Liang L, Zhang Y, Jia T, Cao C, Kang L, Xu W, Chen J, Wu P. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Applied Physics Letters, 2011, 99(16): 161113
40 Zhang C, Jin B, Han J, Kawayama I, Murakami H, Wu J, Kang L, Chen J, Wu P, Tonouchi M. Terahertz nonlinear superconducting metamaterials. Applied Physics Letters, 2013, 102(8): 081121
41 Zhang C, Jin B, Han J, Kawayama I, Murakami H, Jia X, Liang L, Kang L, Chen J, Wu P, Tonouchi M. Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses. New Journal of Physics, 2013, 15(5): 055017
42 Grady N K, Perkins B G Jr, Hwang H Y, Brandt N C, Torchinsky D, Singh R, Yan L, Trugman D, Trugman S A, Jia Q X, Taylor A J, Nelson K A, Chen H T. Nonlinear high-temperature superconducting terahertz metamaterials. New Journal of Physics, 2013, 15(10): 105016
43 Matsunaga R, Shimano R. Nonequilibrium BCS state dynamics induced by intense terahertz pulses in a superconducting NbN film. Physical Review Letters, 2012, 109(18): 187002
44 Schurig D, Mock J J, Smith D R. Electric-field-coupled resonators for negative permittivity metamaterials. Applied Physics Letters, 2006, 88(4): 041109
AI Summary AI Mindmap
PDF(1922 KB)

Accesses

Citations

Detail

Sections
Recommended

/