Influence of optical filtering on transmission capacity in single mode fiber communications

M. Venkata SUDHAKAR, Y. Mallikarjuna REDDY, B. Prabhakara RAO

PDF(714 KB)
PDF(714 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (4) : 424-430. DOI: 10.1007/s12200-014-0426-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Influence of optical filtering on transmission capacity in single mode fiber communications

Author information +
History +

Abstract

This paper presents the design and analysis of optical filters that are placed at the output of directly modulated vertical cavity surface emitting laser (VCSEL) in the process of inexpensive transmitter’s implementation for upcoming generation optical access network. Generation of non return to zero (NRZ) optical signal from the transmitter for 110 km error-free single mode fiber (SMF) transmission at 10 Gb/s with bit error rate (BER) of 10−30 in the absence of the external modulator and encoder was proposed. Effects of super-Gaussian and Butterworth optical filters at VCSEL output were demonstrated to maximize performance of SMF optical systems without need of any dispersion compensation technique.

Keywords

single mode fiber (SMF) / optical filter / dispersion / data rate

Cite this article

Download citation ▾
M. Venkata SUDHAKAR, Y. Mallikarjuna REDDY, B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications. Front. Optoelectron., 2015, 8(4): 424‒430 https://doi.org/10.1007/s12200-014-0426-2

References

[1]
Schires K, Hurtado A, Henning I D, Adams M J. Polarization and time-resolved dynamics of a 1550-nm VCSEL subject to orthogonally polarized optical injection. IEEE Photonics Journal, 2011, 3(3): 555–563
CrossRef Google scholar
[2]
Lin C C, Chi Y C, Kuo H C, Peng P C, Chang-Hasnain C J, Lin G R. Beyond-bandwidth electrical pulse modulation of a TO-Can packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission. Journal of Lightwave Technology, 2011, 29(6): 830–841
CrossRef Google scholar
[3]
Papakonstantinou I, Papadopoulos S, Soos C, Troska J, Vasey F, Vichoudis P. Modal dispersion mitigation in standard single-mode fibers at 850 nm with fiber mode filters. IEEE Photonics Technology Letters, 2010, 22(20): 1476–1478
CrossRef Google scholar
[4]
Koizumi K, Yoshida M, Nakazawa M. A 10-GHz optoelectronic oscillator at 1.1 µm using a single-mode VCSEL and a photonic crystal fiber. IEEE Photonics Technology Letters, 2010, 22(5): 293–295
CrossRef Google scholar
[5]
Gatto A, Boletti A, Boffi P, Neumeyr C, Ortsiefer M, Rönneberg E, Martinelli M. 1.3-µm VCSEL transmission performance up to 12.5 Gbs for metro access networks. IEEE Photonics Technology Letters, 2009, 21(12): 778–780
CrossRef Google scholar
[6]
Rao Y, Yang W, Chase C, Huang M C Y, Worland D P, Khaleghi S, Chitgarha M R, Ziyadi M, Willner A E, Chang-Hasnain C J. Long-wavelength VCSEL using high-contrast grating. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701311
[7]
Killey R I, Watts P M, Mikhailov V, Glick M, Bayvel P. Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator. IEEE Photonics Technology Letters, 2005, 17(3): 714–716
CrossRef Google scholar
[8]
Kobayashi W, Arai M, Yamanaka T, Fujiwara N, Fujisawa T, Ishikawa M, Tsuzuki K, Shibata Y, Kondo Y, Kano F. Wide temperature range (25°C–100°C) operation of a 10-Gb/s 1.55-µm electroabsorption modulator integrated DFB laser for 80-km SMF transmission. IEEE Photonics Technology Letters, 2009, 21(15): 1054–1056
CrossRef Google scholar
[9]
Yi H, Long Q, Tan W, Li L, Wang X, Zhou Z. Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission. Optics Express, 2012, 20(25): 27562–27568
CrossRef Pubmed Google scholar
[10]
Kipnoo E R, Kourouma H, Waswa D, Leitch A W R, Gibbon T B. Analysis of VCSEL transmission for the square kilometre array (SKA) in South Africa. In: Proceedings of the Southern Africa Telecommunication Networks and Applications Conference (SATNAC), George, South Africa. 2012, 483–484
[11]
Cheng X, Wen Y J, Xu Z, Shao X, Wang Y, Yeo Y. 10-Gb/s WDM-PON transmission using uncooled, directly modulated free-running 1.55-μm VCSELs. In: proceedings of European Conference on Optical Communication, Brussels, Belgium. 2008, Paper P.6.02
[12]
Hofmann W, Grüner-Nielsen L, Rönneberg E, Böhm G, Ortsiefer M, Amann M C. 1.55-µm VCSEL modulation performance with dispersion-compensating fibers. IEEE Photonics Technology Letters, 2009, 21(15): 1072–1074
CrossRef Google scholar
[13]
Nishiyama N, Caneau C, Downie J D, Sauer M, Zah C E. 10-Gbps 1.3 and 1.55-μm InP-based VCSELs: 85°C 10-km error-free transmission and room temperature 40-km transmission at 1.55-μm with EDC. In: Proceedings of Optical Fiber Communication Conference. 2006, PDP23
[14]
Rotich Kipnoo E K, Kourouma H Y S, Gamatham R R G, Leitch A W R, Gibbon T B. Chromatic dispersion compensation for VCSEL transmission for applications such as square kilometre array South Africa. In: Proceedings of the 58th annual SAIP conference, Pretoria, South Africa. 2013, paper 171
[15]
Boffi B, Boletti A, Gatto A, Martinelli M. VCSEL to VCSEL injection locking for uncompensated 40-km transmission at 10 Gb/s. In: Proceedings of National Fiber Optic Engineers Conference, San Diego, USA. 2009, JThA32
[16]
Fidler F, Cerimovic S, Dorrer C. High-speed optical characterization of intensity and phase dynamics of a 1.55 µm VCSEL for short-reach applications. In: Proceedings of Optical Fiber Communication Conference. 2006, OW175
[17]
Jensen J B, Rodes R, Caballero A, Cheng N, Zibar D, Monroy I T. VCSEL based coherent PONs. Journal of Lightwave Technology, 2014, 32(8): 1423–1433
[18]
Lin C C, Kuo H C, Peng P C, Lin G R. Chirp and error rate analyses of an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ converter. Optics Express, 2008, 16(7): 4838–4847
[19]
Mena P V, Morikuni J J, Kang S M, Harton A V, Wyatt K W. A simple rate-equation-based thermal VCSEL model. Journal of Lightwave Technology, 1999, 17(5): 865–872
CrossRef Google scholar
[20]
Cartledge J C, Burley G S. The effect of laser chirping on lightwave system performance. Journal of Lightwave Technology, 1989, 7(3): 568–573
CrossRef Google scholar
[21]
Pfennigbauer M, Winzer P J. Choice of MUX/DEMUX filter characteristics for NRZ, RZ, and CSRZ DWDM systems. Journal of Lightwave Technology, 2006, 24(4): 1689–1696
CrossRef Google scholar
[22]
Slobodnik A J, Fenstermacher T E, Kearns W J, Roberts G A, Silva J H, Noonan J P. SAW Butterworth contiguous filters at UHF. IEEE Transactions on Sonics and Ultrasonics, 1979, SU-26(3): 246–253
[23]
Slobodnik A J, Kearns W J, Noonan J P. Design, fabrication and testing of SAW Butterworth filters. In: IEEE MITTs International Microwave Symposium. 1975, 353–355
[24]
Dai B, Gao Z, Wang X, Chen H, Kataoka N, Wada N. Generation of versatile waveforms from CW light using a dual-drive Mach-Zehnder modulator and employing chromatic dispersion. Journal of Lightwave Technology, 2013, 31(1): 145–151
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(714 KB)

Accesses

Citations

Detail

Sections
Recommended

/