Recent progresses on InGaN quantum dot light-emitting diodes
Lai WANG, Wenbin LV, Zhibiao HAO, Yi LUO
Recent progresses on InGaN quantum dot light-emitting diodes
InGaN quantum dots (QDs) have attracted many research interests in recent years for their potentials to realize long wavelength visible emission from green to red, which can pave a way to fabricate the phosphor-free white light emitting diodes (LEDs). In this paper, we reported our recent progresses on InGaN QD LEDs, the discussions were dedicated to the basic physics model of the strain relaxation in self-assembled InGaN QDs, the growth of InGaN QDs with a growth interruption method by metal organic vapor phase epitaxy, the optimization of GaN barrier growth in multilayer InGaN QDs, the demonstration of green, yellow-green and red InGaN QD LEDs, and future challenges.
quantum dot (QD) / InGaN / light emitting diode (LED) / quantum confined Stark effect (QCSE)
[1] |
Taguchi T. Present status of energy saving technologies and future prospect in white LED lighting. IEEJ Transactions on Electrical and Electronic Engineering, 2008, 3(1): 21–26
CrossRef
Google scholar
|
[2] |
Wang Q, Wang T, Bai J, Cullis A G, Parbrook P J, Ranalli F. Influence of annealing temperature on optical properties of InGaN quantum dot based light emitting diodes. Applied Physics Letters, 2008, 93(8): 081915-1–081915-3
CrossRef
Google scholar
|
[3] |
Jarjour A F, Taylor R A, Oliver R A, Kappers M J, Humphreys C J, Tahraoui A. Cavity-enhanced blue single-photon emission from a single InGaN∕GaN quantum dot. Applied Physics Letters, 2007, 91(5): 052101-1–052101-3
CrossRef
Google scholar
|
[4] |
Detchprohm T, Zhu M W, Li Y F, Zhao L, You S, Wetzel C, Preble E A, Paskova T, Hanser D. Wavelength-stable cyan and green light emitting diodes on nonpolar m-plane GaN bulk substrates. Applied Physics Letters, 2010, 96(5): 051101-1–051101-3
CrossRef
Google scholar
|
[5] |
Detchprohm T, Zhu M W, Li Y F, Xia Y, Wetzel C, Preble E A, Liu L H, Paskova T, Hanser D. Green light emitting diodes on a-plane GaN bulk substrates. Applied Physics Letters, 2008, 92(24): 241109-1–241109-3
CrossRef
Google scholar
|
[6] |
Lin Y D, Chakraborty A, Brinkley S, Kuo H C, Melo T, Fujito K, Speck J S, DenBaars S P, Nakamura S. Characterization of blue-green m-plane InGaN light emitting diodes. Applied Physics Letters, 2009, 94(26): 261108-1–261108-3
CrossRef
Google scholar
|
[7] |
Funato M, Ueda M, Kawakami Y, Narukawa Y, Kosugi T, Takahashi M, Mukai T. Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates. Japanese Journal of Applied Physics, 2006, 45(7L): L659
CrossRef
Google scholar
|
[8] |
Sato H, Tyagi A, Zhong H, Fellows N, Chung R B, Saito M, Fujito K, Speck J S, DenBaars S P, Nakamura S. High power and high efficiency green light emitting diode on free-standing semipolar (112) bulk GaN substrate. Physica Status Solidi. Rapid Research Letters, 2007, 1(4): 162–164
CrossRef
Google scholar
|
[9] |
Yamamoto S, Zhao Y J, Pan C C, Chung R B, Fujito K, Sonoda J, DenBaars S P, Nakamura S. High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (20) GaN substrates. Applied Physics Express, 2010, 3(12): 122102
CrossRef
Google scholar
|
[10] |
Feezell D F, Schmidt M C, DenBaars S P, Nakamura S. Development of nonpolar and semipolar InGaN/GaN visible light-emitting diodes. MRS Bulletin, 2009, 34(5): 318–323
CrossRef
Google scholar
|
[11] |
Young E C, Wu F, Romanov A E, Tyagi A, Gallinat C S, DenBaars S P, Nakamura S, Speck J S. Lattice tilt and misfit dislocations in (11) semipolar GaN heteroepitaxy. Applied Physics Express, 2010, 3(1): 11004-1–11004-4
CrossRef
Google scholar
|
[12] |
Craven M D, Lim S H, Wu F, Speck J S, DenBaars S P. Threading dislocation reduction via laterally overgrown nonpolar (1120) a-plane GaN. Applied Physics Letters, 2002, 81(7): 1201–1203
CrossRef
Google scholar
|
[13] |
Masui H, Nakamura S, DenBaars S P, Mishra U K, Ieee T. Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges. IEEE Transactions on Electron Devices, 2010, 57(1): 88–100
CrossRef
Google scholar
|
[14] |
Zhao W, Wang L, Wang J X, Hao Z B A, Luo Y. Theoretical study on critical thicknesses of InGaN grown on (0001) GaN. Journal of Crystal Growth, 2011, 327(1): 202–204
CrossRef
Google scholar
|
[15] |
People R, Bean J C. Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures. Applied Physics Letters, 1985, 47(3): 322–324
CrossRef
Google scholar
|
[16] |
Nakajima K. Equilibrium phase diagrams for Stranski-Krastanov structure mode of III–V ternary quantum dots. Japanese Journal of Applied Physics, 1999, 38(4R): 1875
CrossRef
Google scholar
|
[17] |
Zhao W, Wang L, Lv W B, Wang L, Wang J X, Hao Z B, Luo Y. Growth behavior of high-indium-composition InGaN quantum dots using growth interruption method. Japanese Journal of Applied Physics, 2011, 50(6R): 065601
CrossRef
Google scholar
|
[18] |
Yao H H, Lu T C, Huang G S, Chen C Y, Liang W D, Kuo H C, Wang S C. InGaN self-assembled quantum dots grown by metal–organic chemical vapour deposition with growth interruption. Nanotechnology, 2006, 17(6): 1713–1716
CrossRef
Google scholar
|
[19] |
Ji L W, Su Y K, Chang S J, Wu L W, Fang T H, Chen J F, Tsai T Y, Xue Q K, Chen S C. Growth of nanoscale InGaN self-assembled quantum dots. Journal of Crystal Growth, 2003, 249(1–2): 144–148
CrossRef
Google scholar
|
[20] |
Ee Y K, Zhao H P, Arif R A, Jamil M, Tansu N. Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy. Journal of Crystal Growth, 2008, 310(7–9): 2320–2325
CrossRef
Google scholar
|
[21] |
Bayram C, Razeghi M. Density-controlled growth and field emission property of aligned ZnO nanorod arrays. Applied Physics A, 2009, 97(2): 403–408
|
[22] |
Ji L W, Su Y K, Chang S J, Wu L W, Fang T H, Xue Q K, Lai W C, Chiou Y Z. A novel method to realize InGaN self-assembled quantum dots by metalorganic chemical vapor deposition. Materials Letters, 2003, 57(26–27): 4218–4221
CrossRef
Google scholar
|
[23] |
Wang Q, Wang T, Parbrook P J, Bai J, Cullis A G. The influence of a capping layer on optical properties of self-assembled InGaN quantum dots. Journal of Applied Physics, 2007, 101(11): 113520-1–113520-7
CrossRef
Google scholar
|
[24] |
Wang Q, Wang T, Bai J, Cullis A G, Parbrook P J, Ranalli F. Growth and optical investigation of self-assembled InGaN quantum dots on a GaN surface using a high temperature AlN buffer. Journal of Applied Physics, 2008, 103(12): 123522-1–123522-4
CrossRef
Google scholar
|
[25] |
Bai J, Wang Q, Wang T, Cullis A G, Parbrook P J. Optical and microstructural study of a single layer of InGaN quantum dots. Journal of Applied Physics, 2009, 105(5): 53505-1–53502-5
CrossRef
Google scholar
|
[26] |
Lv W B, Wang L, Wang J X, Xing Y C, Zheng J Y, Yang D, Hao Z B, Luo Y. Green and red light-emitting diodes based on multilayer InGaN/GaN dots grown by growth interruption method. Japanese Journal of Applied Physics, 2013, 52(8S): 08JG13-1–08JG13-2
CrossRef
Google scholar
|
[27] |
Wang L, Zhao W, Lv W B, Wang L, Hao Z B, Luo Y. The influence of underlying layer on morphology of InGaN quantum dots self-assembled by metal organic vapor phase epitaxy. Physica Status Solidi C, 2012, 9(3–4): 782–785
|
[28] |
Lv W B, Wang L, Wang J, Hao Z, Luo Y. Density increase of upper quantum dots in dual InGaN quantum-dot layers. Chinese Physics Letters, 2011, 28(12): 128101-1–128101-3
CrossRef
Google scholar
|
[29] |
Lv W B, Wang L, Wang J, Hao Z, Luo Y. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers. Nanoscale Research Letters, 2012, 7(1): 617–624
CrossRef
Pubmed
Google scholar
|
[30] |
Lv W B, Wang L, Wang L, Xing Y C, Yang D, Hao Z B, Luo Y. InGaN quantum dot green light-emitting diodes with negligible blue shift of electroluminescence peak wavelength. Applied Physics Express, 2014, 7(2): 025203
CrossRef
Google scholar
|
/
〈 | 〉 |