Recent developments in graphene-based optical modulators
Graphene has shown promising perspectives in optical active components due to the large active-control of its permittivity-variation. This paper systematically reviews the recent developments of graphene-based optical modulators, including material property, different integration schemes, single-layer graphene-based modulator, multi-layer and few-layer graphene-based modulators, corresponding figure-of-merits, wavelength/temperature tolerance, and graphene-based fiber-optic modulator. The different treatments for graphene’s isotropic and anisotropic property were also discussed. The results showed graphene is an excellent material for enhancing silicon’s weak modulation capability after it is integrated into the silicon platform, and has great potentials for complementary metal oxide semiconductor (CMOS) compatible optical devices, showing significant influence on optical interconnects in future integrated optoelectronic circuits.
dynamic control /
electro-absorption (EA) effect /
electro-refraction (ER) effect /
effective mode index (
1 | Jalali B, Fathpour S. Silicon photonics. Journal of Lightwave Technology, 2006, 24(12): 4600-4615 doi: 10.1109/JLT.2006.885782 |
2 | Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64-67 doi: 10.1038/nature10067 pmid: 21552277 |
3 | Tu X, Liow T Y, Song J, Luo X, Fang Q, Yu M, Lo G Q. 50-Gb/s silicon optical modulator with traveling-wave electrodes. Optics Express, 2013, 21(10): 12776-12782 doi: 10.1364/OE.21.012776 pmid: 23736495 |
4 | Thomson D, Gardes F Y, Fedeli J M, Zlatanovic S, Hu Y, Kuo B P P, Myslivets E, Alic N, Radic S, Mashanovich G Z, Reed G T. 50-Gb/s silicon optical modulator. IEEE Photonics Technology Letters, 2012, 24(4): 234-236 doi: 10.1109/LPT.2011.2177081 |
5 | Baba T, Akiyama S, Imai M, Hirayama N, Takahashi H, Noguchi Y, Horikawa T, Usuki T. 50-Gb/s ring-resonator-based silicon modulator, Optical Express, 2013, 21(10): 11869-11876 |
6 | Thomson D J, Gardes F Y, Cox D C, Fedeli J M, Mashanovich G Z, Reed G T.Self-aligned silicon ring resonator optical modulator with focused ion beam error correction, Journal of the Optical Society of America B, 2013, 30(2): 445-449 |
7 | Tang Y, Peters J D, Bowers J E. Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission. Optics Express, 2012, 20(10): 11529-11535 doi: 10.1364/OE.20.011529 pmid: 22565772 |
8 | Smirnova D A, Gorbach A V, Iorsh I V, Shadrivov I V, Kivshar Y S. Nonliear swithing with a graphene coupler. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(4): 045443 doi: 10.1103/PhysRevB.88.045443 |
9 | Kim K, Cho S H, Lee C W. Nonlinear optics: graphene-silicon fusion. Nature Photonics, 2012, 6(8): 502-503 doi: 10.1038/nphoton.2012.177 |
10 | Lee C C, Suzuki S, Xie W, Schibli T R. Broadband graphene electro-optic modulators with sub-wavelength thickness. Optics Express, 2012, 20(5): 5264-5269 doi: 10.1364/OE.20.005264 pmid: 22418332 |
11 | Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G. Broadband graphene terahertz modulators enabled by intraband transitions. Nature Communications, 2012, 3(4): 780 doi: 10.1038/ncomms1787 pmid: 22510685 |
12 | Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics. Nature Photonics, 2012, 6(11): 749-758 doi: 10.1038/nphoton.2012.262 |
13 | Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332(6035): 1291-1294 doi: 10.1126/science.1202691 pmid: 21659598 |
14 | Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677-3694 doi: 10.1021/nn300989g pmid: 22512399 |
15 | Hao R, Cassan E, Xu Y, Qiu M, Wei X C, Li E P. Reconfigurable parallel plasmonic transmission lines with nanometer light localization and long propagation distance. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 460189 |
16 | Hao R, Li E, Wei X. Two-dimensional light confinement in cross-index-modulation plasmonic waveguides. Optics Letters, 2012, 37(14): 2934-2936 doi: 10.1364/OL.37.002934 pmid: 22825183 |
17 | Auditore A, de Angelis C, Locatelli A, Aceves A B. Tuning of surface plasmon polaritons beat length in graphene directional couplers. Optics Letters, 2013, 38(20): 4228-4231 doi: 10.1364/OL.38.004228 pmid: 24321966 |
18 | Zhu X, Yan W, Mortensen N A, Xiao S. Bends and splitters in graphene nanoribbon waveguides. Optics Express, 2013, 21(3): 3486-3491 doi: 10.1364/OE.21.003486 pmid: 23481806 |
19 | Hao R, Du W, Chen H, Jin X, Yang L, Li E. Ultra-compact optical modulator by graphene induced electro-refraction effect. Applied Physics Letters, 2013, 103(6): 061116 doi: 10.1063/1.4818457 |
20 | Li Z, Yu N. Modulation of mid-infrared light using graphene-metal plasmonic antennas. Applied Physics Letters, 2013, 102(13): 131108 doi: 10.1063/1.4800931 |
21 | Andersen D R. Graphene-based long-wave infrared TM surface plasmon modulator. Journal of the Optical Society of America B, Optical Physics, 2010, 27(4): 818-823 doi: 10.1364/JOSAB.27.000818 |
22 | Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics. Nature Photonics, 2012, 6(11): 749-758 doi: 10.1038/nphoton.2012.262 |
23 | Lu Z, Zhao W. Nanoscale electro-optic modulators based on graphene-slot waveguides. Journal of the Optical Society of America B, Optical Physics, 2012, 29(6): 1490-1496 doi: 10.1364/JOSAB.29.001490 |
24 | Mikhailov S A, Ziegler K. New electromagnetic mode in graphene. Physical Review Letters, 2007, 99(1): 016803 doi: 10.1103/PhysRevLett.99.016803 pmid: 17678180 |
25 | Jablan M, Buljan H, Solja?i? M. Plasmonics in graphene at infrared frequencies. Physical Review B: Condensed Matter and Materials Physics, 2009, 80(24): 245435 doi: 10.1103/PhysRevB.80.245435 |
26 | Gan C H, Chu H S, Li E P. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(12): 125431 doi: 10.1103/PhysRevB.85.125431 |
27 | Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 2011, 6(10): 630-634 doi: 10.1038/nnano.2011.146 pmid: 21892164 |
28 | Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487(7405): 82-85 pmid: 22722866 |
29 | Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenovi? M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487(7405): 77-81 pmid: 22722861 |
30 | Gusynin V P, Sharapov S G, Carbotte J P. Magneto-optical conductivity in graphene. Journal of Physics: Condensed Matter, 2007, 19(2): 026222 doi: 10.1088/0953-8984/19/2/026222 |
31 | Gosciniak J, Tan D T. Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators. Nanotechnology, 2013, 24(18): 185202 doi: 10.1088/0957-4484/24/18/185202 pmid: 23575218 |
32 | Lin H, Pantoja M F, Angulo L D, Alvarez J, Martin R G, Garcia S G. FDTD modeling of graphenedevices using complex conjugate dispersion material model. IEEE Microwave and Wireless Components Letters, 2012, 22(12): 612-614 doi: 10.1109/LMWC.2012.2227466 |
33 | Wang B, Zhang X, Yuan X, Teng J. Optical coupling of surface plasmons between graphene sheets. Applied Physics Letters, 2012, 100(13): 131111 doi: 10.1063/1.3698133 |
34 | Li H, Wang L, Huang Z, Sun B, Zhai X, Li X. Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system. Europhysics Letters, 2013, 104(3): 37001 doi: 10.1209/0295-5075/104/37001 |
35 | Yang L, Hu T, Hao R, Qiu C, Xu C, Yu H, Xu Y, Jiang X, Li Y, Yang J. Low-chirp high-extinction-ratio modulator based on graphene-silicon waveguide. Optics Letters, 2013, 38(14): 2512-2515 doi: 10.1364/OL.38.002512 pmid: 23939097 |
36 | Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824-830 doi: 10.1038/nature01937 pmid: 12917696 |
37 | Kim K, Choi J Y, Kim T, Cho S H, Chung H J. A role for graphene in silicon-based semiconductor devices. Nature, 2011, 479(7373): 338-344 doi: 10.1038/nature10680 pmid: 22094694 |
38 | Du W, Hao R, Li E P. The study of few-layer graphene based Mach-Zehnder modulator. Optics Communications, 2014, 323: 49-53 |
39 | Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y, Loh K P. Broadband graphene polarizer. Nature Photonics, 2011, 5(7): 411-415 |
40 | Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H, Feng Y P, Shen Z X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Letters, 2007, 7(9): 2758-2763 doi: 10.1021/nl071254m pmid: 17655269 |
41 | Zhou F, Hao R, Jin X, Zhang X, Li E. A Graphene-enhanced fiberoptic phase modulator with large linear dynamic range. IEEE Photonics Technology Letters, 2014 (accepted) |
42 | LiuZ B, FengM, JiangW S, XinW, WangP, ShengQ W, LiuY G, Wang D N, ZhouW Y, TianJ G. Broadband all-optical modulation using a graphene-covered-microfiber. Laser Physics Letters, 2013, 10(6): 065901 doi: 10.1088/1612-2011/10/6/065901 |
43 | Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen Y R. Ultrafast all-optical graphene modulator. Nano Letters, 2014, 14(2): 955-959 doi: 10.1021/nl404356t pmid: 24397481 |
/
〈 | 〉 |