Optical approaches in study of nanocatalysis with single-molecule and single-particle resolution
Kun LI, Weiwei QIN, Yan XU, Tianhuan PENG, Di LI
Optical approaches in study of nanocatalysis with single-molecule and single-particle resolution
Studying the activity of individual nanocatalysts, especially with high spatiotemporal resolution of single-molecule and single-turnover scale, is essential for the understanding of catalytic mechanism and the designing of effective catalysts. Several approaches have been developed to monitor the catalytic reaction on single catalysts. In this review, we summarized the updated progresses of several new spectroscopic and microscopic approaches, including single-molecule fluorescence microscopy, surface-enhanced Raman spectroscopy, surface plasmon resonance microscopy and X-ray microscopy, for the study of single-molecule and single-particle catalysis.
nanocatalysis / single-molecule fluorescence / surface-enhanced Raman / localized surface plasmon resonance / X-ray
[1] |
Bell A T. The impact of nanoscience on heterogeneous catalysis. Science, 2003, 299(5613): 1688–1691
CrossRef
Pubmed
Google scholar
|
[2] |
Weckhuysen B M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angewandte Chemie International Edition, 2009, 48(27): 4910–4943
CrossRef
Pubmed
Google scholar
|
[3] |
Weckhuysen B M. Preface: recent advances in the in-situ characterization of heterogeneous catalysts. Chemical Society Reviews, 2010, 39(12): 4557–4559
CrossRef
Google scholar
|
[4] |
Buurmans I L C, Weckhuysen B M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nature Chemistry, 2012, 4(11): 873–886
CrossRef
Pubmed
Google scholar
|
[5] |
Cordes T, Blum S A. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nature Chemistry, 2013, 5(12): 993–999
CrossRef
Pubmed
Google scholar
|
[6] |
Wang W, Tao N. Detection, counting, and imaging of single nanoparticles. Analytical Chemistry, 2014, 86(1): 2–14
CrossRef
Pubmed
Google scholar
|
[7] |
Gellman A J, Shukla N. Nanocatalysis: more than speed. Nature Materials, 2009, 8(2): 87–88
CrossRef
Pubmed
Google scholar
|
[8] |
Murzin D Y. Nanokinetics for nanocatalysis. Catalysis Science & Technology, 2011, 1(3): 380–384
CrossRef
Google scholar
|
[9] |
Zhang S, Nguyen L, Zhu Y, Zhan S, Tsung C K, Tao F F. In-situ studies of nanocatalysis. Accounts of Chemical Research, 2013, 46(8): 1731–1739
CrossRef
Pubmed
Google scholar
|
[10] |
Tao A R, Habas S, Yang P D. Shape control of colloidal metal nanocrystals. Small, 2008, 4(3): 310–325
CrossRef
Google scholar
|
[11] |
Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103
CrossRef
Pubmed
Google scholar
|
[12] |
Langille M R, Personick M L, Zhang J, Mirkin C A. Defining rules for the shape evolution of gold nanoparticles. Journal of the American Chemical Society, 2012, 134(35): 14542–14554
CrossRef
Pubmed
Google scholar
|
[13] |
Cox J T, Zhang B. Nanoelectrodes: recent advances and new directions. Annual Review of Analytical Chemistry, 2012, 5(1): 253–272
CrossRef
Pubmed
Google scholar
|
[14] |
Ebejer N, Güell A G, Lai S C S, McKelvey K, Snowden M E, Unwin P R. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annual Review of Analytical Chemistry, 2013, 6(1): 329–351
CrossRef
Pubmed
Google scholar
|
[15] |
Lu H P, Xun L, Xie X S. Single-molecule enzymatic dynamics. Science, 1998, 282(5395): 1877–1882
CrossRef
Pubmed
Google scholar
|
[16] |
Edman L, Foldes-Papp Z, Wennmalm S, Rigler R. The fluctuating enzyme: a single molecule approach. Chemical Physics, 1999, 247(1): 11–22
CrossRef
Google scholar
|
[17] |
Paige M F, Fromm D P, Moerner W E. Biomolecular applications of single-molecule measurements: kinetics and dynamics of a single enzyme reaction. Proceedings-Society of Photo-Optical Instrumentation Engineers, 2002, 4634: 92–103
|
[18] |
Velonia K, Flomenbom O, Loos D, Masuo S, Cotlet M, Engelborghs Y, Hofkens J, Rowan A E, Klafter J, Nolte R J M, de Schryver F C. Single-enzyme kinetics of CALB-catalyzed hydrolysis. Angewandte Chemie International Edition, 2005, 44(4): 560–564
CrossRef
Pubmed
Google scholar
|
[19] |
English B P, Min W, van Oijen A M, Lee K T, Luo G, Sun H, Cherayil B J, Kou S C, Xie X S. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nature Chemical Biology, 2006, 2(2): 87–94
CrossRef
Pubmed
Google scholar
|
[20] |
Smiley R D, Hammes G G. Single molecule studies of enzyme mechanisms. Chemical Reviews, 2006, 106(8): 3080–3094
CrossRef
Pubmed
Google scholar
|
[21] |
Roeffaers M B J, Sels B F, Uji-I H, de Schryver F C, Jacobs P A, de Vos D E, Hofkens J. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature, 2006, 439(7076): 572–575
CrossRef
Pubmed
Google scholar
|
[22] |
Naito K, Tachikawa T, Fujitsuka M, Majima T. Real-time single-molecule imaging of the spatial and temporal distribution of reactive oxygen species with fluorescent probes: Applications to TiO2 photocatalysts. Journal of Physical Chemistry C, 2008, 112(4): 1048–1059
CrossRef
Google scholar
|
[23] |
Xu W, Kong J S, Yeh Y T E, Chen P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nature Materials, 2008, 7(12): 992–996
CrossRef
Pubmed
Google scholar
|
[24] |
Janssen K P F, de Cremer G, Neely R K, Kubarev A V, Van Loon J, Martens J A, de Vos D E, Roeffaers M B J, Hofkens J. Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chemical Society Reviews, 2014, 43(4): 990–1006
CrossRef
Pubmed
Google scholar
|
[25] |
Chen P, Zhou X, Andoy N M, Han K S, Choudhary E, Zou N, Chen G, Shen H. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chemical Society Reviews, 2014, 43(4): 1107–1117
CrossRef
Pubmed
Google scholar
|
[26] |
Tachikawa T, Majima T. Single-molecule, single-particle approaches for exploring the structure and kinetics of nanocatalysts. Langmuir, 2012, 28(24): 8933–8943
CrossRef
Pubmed
Google scholar
|
[27] |
Chen P, Xu W L, Zhou X C, Panda D, Kalininskiy A. Single-nanoparticle catalysis at single-turnover resolution. Chemical Physics Letters, 2009, 470(4–6): 151–157
CrossRef
Google scholar
|
[28] |
Xu W, Kong J S, Chen P. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level. Physical Chemistry Chemical Physics, 2009, 11(15): 2767–2778
CrossRef
Pubmed
Google scholar
|
[29] |
Zhou X, Xu W, Liu G, Panda D, Chen P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. Journal of the American Chemical Society, 2010, 132(1): 138–146
CrossRef
Pubmed
Google scholar
|
[30] |
Chen P, Zhou X, Shen H, Andoy N M, Choudhary E, Han K S, Liu G, Meng W. Single-molecule fluorescence imaging of nanocatalytic processes. Chemical Society Reviews, 2010, 39(12): 4560–4570
CrossRef
Pubmed
Google scholar
|
[31] |
Xu W, Shen H, Kim Y J, Zhou X, Liu G, Park J, Chen P. Single-molecule electrocatalysis by single-walled carbon nanotubes. Nano Letters, 2009, 9(12): 3968–3973
CrossRef
Pubmed
Google scholar
|
[32] |
Han K S, Liu G, Zhou X, Medina R E, Chen P. How does a single Pt nanocatalyst behave in two different reactions? A single-molecule study. Nano Letters, 2012, 12(3): 1253–1259
CrossRef
Pubmed
Google scholar
|
[33] |
Xu W, Jain P K, Beberwyck B J, Alivisatos A P. Probing redox photocatalysis of trapped electrons and holes on single Sb-doped titania nanorod surfaces. Journal of the American Chemical Society, 2012, 134(9): 3946–3949
CrossRef
Pubmed
Google scholar
|
[34] |
Zhou X, Andoy N M, Liu G, Choudhary E, Han K S, Shen H, Chen P. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nature Nanotechnology, 2012, 7(4): 237–241
CrossRef
Pubmed
Google scholar
|
[35] |
Andoy N M, Zhou X, Choudhary E, Shen H, Liu G, Chen P. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. Journal of the American Chemical Society, 2013, 135(5): 1845–1852
CrossRef
Pubmed
Google scholar
|
[36] |
Zhou X C, Choudhary E, Andoy N M, Zou N M, Chen P. Scalable parallel screening of catalyst activity at the single-particle level and subdiffraction resolution. Acs Catalysis, 2013, 3(7): 1448–1453
CrossRef
Google scholar
|
[37] |
Tachikawa T, Yamashita S, Majima T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. Journal of the American Chemical Society, 2011, 133(18): 7197–7204
CrossRef
Pubmed
Google scholar
|
[38] |
Bian Z F, Tachikawa T, Kim W, Choi W, Majima T. Superior electron transport and photocatalytic abilities of metal-nanoparticle-loaded TiO2 superstructures. Journal of Physical Chemistry C, 2012, 116(48): 25444–25453
CrossRef
Google scholar
|
[39] |
Wang N, Tachikawa T, Majima T. Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chemical Science, 2011, 2(5): 891–900
CrossRef
Google scholar
|
[40] |
Tachikawa T, Yonezawa T, Majima T. Super-resolution mapping of reactive sites on titania-based nanoparticles with water-soluble fluorogenic probes. ACS Nano, 2013, 7(1): 263–275
CrossRef
Pubmed
Google scholar
|
[41] |
Roeffaers M B J, de Cremer G, Libeert J, Ameloot R, Dedecker P, Bons A J, Bückins M, Martens J A, Sels B F, de Vos D E, Hofkens J. Super-resolution reactivity mapping of nanostructured catalyst particles. Angewandte Chemie International Edition, 2009, 48(49): 9285–9289
CrossRef
Pubmed
Google scholar
|
[42] |
de Cremer G, Roeffaers M B J, Bartholomeeusen E, Lin K, Dedecker P, Pescarmona P P, Jacobs P A, de Vos D E, Hofkens J, Sels B F. High-resolution single-turnover mapping reveals intraparticle diffusion limitation in Ti-MCM-41-catalyzed epoxidation. Angewandte Chemie International Edition, 2010, 49(5): 908–911
CrossRef
Pubmed
Google scholar
|
[43] |
Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102–1106
CrossRef
Pubmed
Google scholar
|
[44] |
Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R, Feld M S. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997, 78(9): 1667–1670
CrossRef
Google scholar
|
[45] |
Brus L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Accounts of Chemical Research, 2008, 41(12): 1742–1749
CrossRef
Pubmed
Google scholar
|
[46] |
Stiles P L, Dieringer J A, Shah N C, Van Duyne R P. Surface-enhanced Raman spectroscopy. Annual Review of Analytical Chemistry, 2008, 1(1): 601–626
CrossRef
Pubmed
Google scholar
|
[47] |
Sonntag M D, Klingsporn J M, Zrimsek A B, Sharma B, Ruvuna L K, Van Duyne R P. Molecular plasmonics for nanoscale spectroscopy. Chemical Society Reviews, 2014, 43(4): 1230–1247
CrossRef
Pubmed
Google scholar
|
[48] |
Bailo E, Deckert V. Tip-enhanced Raman scattering. Chemical Society Reviews, 2008, 37(5): 921–930
CrossRef
Pubmed
Google scholar
|
[49] |
Pettinger B. Single-molecule surface- and tip-enhanced Raman spectroscopy. Molecular Physics, 2010, 108(16): 2039–2059
CrossRef
Google scholar
|
[50] |
Kim H, Kosuda K M, Van Duyne R P, Stair P C. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chemical Society Reviews, 2010, 39(12): 4820–4844
CrossRef
Pubmed
Google scholar
|
[51] |
Sonntag M D, Klingsporn J M, Garibay L K, Roberts J M, Dieringer J A, Seideman T, Scheidt K A, Jensen L, Schatz G C, Van Duyne R P. Single-molecule tip-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 2012, 116(1): 478–483
CrossRef
Google scholar
|
[52] |
Kang L, Xu P, Zhang B, Tsai H, Han X, Wang H L. Laser wavelength- and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy. Chemical Communications, 2013, 49(33): 3389–3391
CrossRef
Pubmed
Google scholar
|
[53] |
Kang L L, Xu P, Chen D T, Zhang B, Du Y C, Han X J, Li Q, Wang H L. Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 2013, 117(19): 10007–10012
CrossRef
Google scholar
|
[54] |
Xu P, Kang L, Mack N H, Schanze K S, Han X, Wang H L. Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. Scientific Reports, 2013, 3: 2997
Pubmed
|
[55] |
van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J G, Deckert V, Weckhuysen B M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nature Nanotechnology, 2012, 7(9): 583–586
CrossRef
Pubmed
Google scholar
|
[56] |
Sun M, Zhang Z, Zheng H, Xu H. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Scientific Reports, 2012, 2: 647
Pubmed
|
[57] |
Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 2007, 58(1): 267–297
CrossRef
Pubmed
Google scholar
|
[58] |
Henry A I, Bingham J M, Ringe E, Marks L D, Schatz G C, Van Duyne R P. Correlated structure and optical property studies of plasmonic nanoparticles. Journal of Physical Chemistry C, 2011, 115(19): 9291–9305
CrossRef
Google scholar
|
[59] |
Ringe E, Sharma B, Henry A I, Marks L D, Van Duyne R P. Single nanoparticle plasmonics. Physical Chemistry Chemical Physics, 2013, 15(12): 4110–4129
CrossRef
Pubmed
Google scholar
|
[60] |
Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Biosensing with plasmonic nanosensors. Nature Materials, 2008, 7(6): 442–453
CrossRef
Pubmed
Google scholar
|
[61] |
Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A, Nuzzo R G. Nanostructured plasmonic sensors. Chemical Reviews, 2008, 108(2): 494–521
CrossRef
Pubmed
Google scholar
|
[62] |
Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W, Wen Y, He Y, Huang Q, Long Y T, Fan C. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angewandte Chemie International Edition, 2011, 50(50): 11994–11998
CrossRef
Pubmed
Google scholar
|
[63] |
Liu Q, Jing C, Zheng X, Gu Z, Li D, Li D W, Huang Q, Long Y T, Fan C. Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles. Chemical Communications, 2012, 48(77): 9574–9576
CrossRef
Pubmed
Google scholar
|
[64] |
Shi L, Jing C, Ma W, Li D W, Halls J E, Marken F, Long Y T. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angewandte Chemie International Edition, 2013, 52(23): 6011–6014
CrossRef
Pubmed
Google scholar
|
[65] |
Li K, Qin W, Li F, Zhao X, Jiang B, Wang K, Deng S, Fan C, Li D. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angewandte Chemie International Edition, 2013, 52(44): 11542–11545
CrossRef
Pubmed
Google scholar
|
[66] |
Langhammer C, Larsson E M. Nanoplasmonic in situ spectroscopy for catalysis applications. Acs Catalysis, 2012, 2(9): 2036–2045
CrossRef
Google scholar
|
[67] |
Novo C, Funston A M, Mulvaney P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nature Nanotechnology, 2008, 3(10): 598–602
CrossRef
Pubmed
Google scholar
|
[68] |
Herrmann L O, Baumberg J J. Watching single nanoparticles grow in real time through supercontinuum spectroscopy. Small, 2013, 9(22): 3743–3747
CrossRef
Pubmed
Google scholar
|
[69] |
Eo M, Baek J, Song H D, Lee S, Yi J. Quantification of electron transfer rates of different facets on single gold nanoparticles during catalytic reactions. Chemical Communications, 2013, 49(45): 5204–5206
CrossRef
Pubmed
Google scholar
|
[70] |
Larsson E M, Langhammer C, Zorić I, Kasemo B. Nanoplasmonic probes of catalytic reactions. Science, 2009, 326(5956): 1091–1094
CrossRef
Pubmed
Google scholar
|
[71] |
Langhammer C, Larsson E M, Kasemo B, Zorić I. Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry. Nano Letters, 2010, 10(9): 3529–3538
CrossRef
Pubmed
Google scholar
|
[72] |
Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Materials, 2011, 10(8): 631–636
CrossRef
Pubmed
Google scholar
|
[73] |
Tang M L, Liu N, Dionne J A, Alivisatos A P. Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals. Journal of the American Chemical Society, 2011, 133(34): 13220–13223
CrossRef
Pubmed
Google scholar
|
[74] |
Seo D, Park G, Song H. Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe. Journal of the American Chemical Society, 2012, 134(2): 1221–1227
CrossRef
Pubmed
Google scholar
|
[75] |
Tittl A, Yin X, Giessen H, Tian X D, Tian Z Q, Kremers C, Chigrin D N, Liu N. Plasmonic smart dust for probing local chemical reactions. Nano Letters, 2013, 13(4): 1816–1821
Pubmed
|
[76] |
Shan X, Patel U, Wang S, Iglesias R, Tao N. Imaging local electrochemical current via surface plasmon resonance. Science, 2010, 327(5971): 1363–1366
CrossRef
Pubmed
Google scholar
|
[77] |
Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L, Wang W, Lu J, Wang S, Gong Q, Li J, Tao N. Imaging the electrocatalytic activity of single nanoparticles. Nature Nanotechnology, 2012, 7(10): 668–672
CrossRef
Pubmed
Google scholar
|
[78] |
Frenkel A I, Rodriguez J A, Chen J G G. Synchrotron techniques for in situ catalytic studies: capabilities, challenges, and opportunities. Acs Catalysis, 2012, 2(11): 2269–2280
CrossRef
Google scholar
|
[79] |
Bordiga S, Groppo E, Agostini G, van Bokhoven J A, Lamberti C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chemical Reviews, 2013, 113(3): 1736–1850
CrossRef
Pubmed
Google scholar
|
[80] |
Beale A M, Jacques S D M, Weckhuysen B M. Chemical imaging of catalytic solids with synchrotron radiation. Chemical Society Reviews, 2010, 39(12): 4656–4672
CrossRef
Pubmed
Google scholar
|
[81] |
de Smit E, Swart I, Creemer J F, Hoveling G H, Gilles M K, Tyliszczak T, Kooyman P J, Zandbergen H W, Morin C, Weckhuysen B M, de Groot F M F. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature, 2008, 456(7219): 222–225
CrossRef
Pubmed
Google scholar
|
[82] |
Tada M, Ishiguro N, Uruga T, Tanida H, Terada Y, Nagamatsu S, Iwasawa Y, Ohkoshi S. μ-XAFS of a single particle of a practical NiOx/Ce2Zr2Oy catalyst. Physical Chemistry Chemical Physics, 2011, 13(33): 14910–14913
CrossRef
Pubmed
Google scholar
|
[83] |
Chao W, Fischer P, Tyliszczak T, Rekawa S, Anderson E, Naulleau P. Real space soft X-ray imaging at 10 nm spatial resolution. Optics Express, 2012, 20(9): 9777–9783
CrossRef
Pubmed
Google scholar
|
[84] |
Hell S W. Toward fluorescence nanoscopy. Nature Biotechnology, 2003, 21(11): 1347–1355
CrossRef
Pubmed
Google scholar
|
[85] |
Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 2006, 91(11): 4258–4272
CrossRef
Pubmed
Google scholar
|
[86] |
Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 2008, 319(5864): 810–813
CrossRef
Pubmed
Google scholar
|
[87] |
Chao W, Harteneck B D, Liddle J A, Anderson E H, Attwood D T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 2005, 435(7046): 1210–1213
CrossRef
Pubmed
Google scholar
|
[88] |
Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F. High-resolution scanning X-ray diffraction microscopy. Science, 2008, 321(5887): 379–382
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |