Two-photon microscopy in pre-clinical and clinical cancer research

Jun LIU

PDF(1174 KB)
PDF(1174 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (2) : 141-151. DOI: 10.1007/s12200-014-0415-5
REVIEW ARTICLE
REVIEW ARTICLE

Two-photon microscopy in pre-clinical and clinical cancer research

Author information +
History +

Abstract

The applications of two-photon microscopy (TPM) on pre-clinical and clinical study of human cancer and diseases are reviewed in this paper. First, the principle of two-photon excitation (TPE) is introduced. The resulting advantages of TPM for imaging studies of animal models and human samples are then elaborated. Subsequently, the applications of TPM on various aspects of tumor studies, including tumor angiogenesis, invasion and metastasis, tumor microenvironment and metabolism are introduced. Furthermore, studies of TPM on clinical human skin biopsy and the development of two-photon microendoscopy are reviewed. Finally, potential future directions are discussed.

Keywords

two-photon microscopy (TPM) / intravital imaging / pre-clinical tumor studies / cancer early detection / cancer diagnosis / medical imaging

Cite this article

Download citation ▾
Jun LIU. Two-photon microscopy in pre-clinical and clinical cancer research. Front. Optoelectron., 2015, 8(2): 141‒151 https://doi.org/10.1007/s12200-014-0415-5

References

[1]
Yildiz A, Forkey J N, McKinney S A, Ha T, Goldman Y E, Selvin P R. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 2003, 300(5628): 2061–2065
CrossRef Pubmed Google scholar
[2]
Yildiz A, Park H, Safer D, Yang Z, Chen L Q, Selvin P R, Sweeney H L. Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. The Journal of Biological Chemistry, 2004, 279(36): 37223–37226
CrossRef Pubmed Google scholar
[3]
Myong S, Rasnik I, Joo C, Lohman T M, Ha T. Repetitive shuttling of a motor protein on DNA. Nature, 2005, 437(7063): 1321–1325
CrossRef Pubmed Google scholar
[4]
Tan E, Wilson T J, Nahas M K, Clegg R M, Lilley D M J, Ha T. A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9308–9313
CrossRef Pubmed Google scholar
[5]
Wang Y, Shyy J Y J, Chien S. Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annual Review of Biomedical Engineering, 2008, 10(1): 1–38
CrossRef Pubmed Google scholar
[6]
Perry S W, Burke R M, Brown E B. Two-photon and second harmonic microscopy in clinical and translational cancer research. Annals of Biomedical Engineering, 2012, 40(2): 277–291
CrossRef Pubmed Google scholar
[7]
Nguyen Q T, Olson E S, Aguilera T A, Jiang T, Scadeng M, Ellies L G, Tsien R Y. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9): 4317–4322
CrossRef Pubmed Google scholar
[8]
Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy. Science, 1990, 248(4951): 73–76
CrossRef Pubmed Google scholar
[9]
Fang H, Declerck Y A. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Research, 2013, 73(16): 4965–4977
CrossRef Pubmed Google scholar
[10]
Cukierman E, Pankov R, Stevens D R, Yamada K M. Taking cell-matrix adhesions to the third dimension. Science, 2001, 294(5547): 1708–1712
CrossRef Pubmed Google scholar
[11]
Swartz M A, Iida N, Roberts E W, Sangaletti S, Wong M H, Yull F E, Coussens L M, DeClerck Y A. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Research, 2012, 72(10): 2473–2480
CrossRef Pubmed Google scholar
[12]
Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge J S, Polverini P J, Mooney D J. Engineering tumors with 3D scaffolds. Nature Methods, 2007, 4(10): 855–860
CrossRef Pubmed Google scholar
[13]
Kenny P A, Lee G Y, Myers C A, Neve R M, Semeiks J R, Spellman P T, Lorenz K, Lee E H, Barcellos-Hoff M H, Petersen O W, Gray J W, Bissell M J. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Molecular Oncology, 2007, 1(1): 84–96
CrossRef Pubmed Google scholar
[14]
Wang F, Weaver V M, Petersen O W, Larabell C A, Dedhar S, Briand P, Lupu R, Bissell M J. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(25): 14821–14826
CrossRef Pubmed Google scholar
[15]
Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials, 2006, 27(22): 4079–4086
CrossRef Pubmed Google scholar
[16]
Jain R K, Duda D G, Clark J W, Loeffler J S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nature Clinical Practice Oncology, 2006, 3(1): 24–40
CrossRef Pubmed Google scholar
[17]
Benninger R K P, Hao M, Piston D W. Multi-photon excitation imaging of dynamic processes in living cells and tissues. In: Amara S G, Fleischmann B, Hebert S C, Lederer W J, Miyajima A, Zechner R, eds. Reviews of Physiology, Biochemistry and Pharmacology, 2008, 160: 71–92
CrossRef Google scholar
[18]
Helmchen F, Denk W. Deep tissue two-photon microscopy. Nature Methods, 2005, 2(12): 932–940
CrossRef Pubmed Google scholar
[19]
Skala M C, Riching K M, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri K W, White J G, Ramanujam N. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49): 19494–19499
CrossRef Pubmed Google scholar
[20]
Walsh A J, Cook R S, Manning H C, Hicks D J, Lafontant A, Arteaga C L, Skala M C. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Research, 2013, 73(20): 6164–6174
CrossRef Pubmed Google scholar
[21]
Lim C S, Cho B R. Two-photon probes for biomedical applications. BMB Reports, 2013, 46(4): 188–194
CrossRef Pubmed Google scholar
[22]
Chudakov D M, Matz M V, Lukyanov S, Lukyanov K A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiological Reviews, 2010, 90(3): 1103–1163
CrossRef Pubmed Google scholar
[23]
Le Dévédec S E, Lalai R, Pont C, de Bont H, van de Water B. Two-photon intravital multicolor imaging combined with inducible gene expression to distinguish metastatic behavior of breast cancer cells in vivo. Molecular Imaging and Biology, 2011, 13(1): 67–77
[24]
Mahou P, Zimmerley M, Loulier K, Matho K S, Labroille G, Morin X, Supatto W, Livet J, Débarre D, Beaurepaire E. Multicolor two-photon tissue imaging by wavelength mixing. Nature Methods, 2012, 9(8): 815–818
CrossRef Pubmed Google scholar
[25]
Shcherbo D, Merzlyak E M, Chepurnykh T V, Fradkov A F, Ermakova G V, Solovieva E A, Lukyanov K A, Bogdanova E A, Zaraisky A G, Lukyanov S, Chudakov D M. Bright far-red fluorescent protein for whole-body imaging. Nature Methods, 2007, 4(9): 741–746
CrossRef Pubmed Google scholar
[26]
Shcherbo D, Murphy C S, Ermakova G V, Solovieva E A, Chepurnykh T V, Shcheglov A S, Verkhusha V V, Pletnev V Z, Hazelwood K L, Roche P M, Lukyanov S, Zaraisky A G, Davidson M W, Chudakov D M. Far-red fluorescent tags for protein imaging in living tissues. The Biochemical Journal, 2009, 418(3): 567–574
CrossRef Pubmed Google scholar
[27]
Giepmans B N G, Adams S R, Ellisman M H, Tsien R Y. The fluorescent toolbox for assessing protein location and function. Science, 2006, 312(5771): 217–224
CrossRef Pubmed Google scholar
[28]
Cahalan M D, Parker I, Wei S H, Miller M J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nature Reviews. Immunology, 2002, 2(11): 872–880
CrossRef Pubmed Google scholar
[29]
Toubai T, Sun Y, Luker G, Liu J, Luker K E, Tawara I, Evers R, Liu C, Mathewson N, Malter C, Nieves E, Choi S, Murphy K M, Reddy P. Host-derived CD8+ dendritic cells are required for induction of optimal graft-versus-tumor responses after experimental allogeneic bone marrow transplantation. Blood, 2013, 121(20): 4231–4241
CrossRef Pubmed Google scholar
[30]
Bestvater F, Spiess E, Stobrawa G, Hacker M, Feurer T, Porwol T, Berchner-Pfannschmidt U, Wotzlaw C, Acker H. Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. Journal of Microscopy, 2002, 208(Pt 2): 108–115
CrossRef Pubmed Google scholar
[31]
Liu B, Hu X L, Liu J, Zhao Y D, Huang Z L. Synthesis and photophysical properties of novel pyrimidine-based two-photon absorption chromophores. Tetrahedron Letters, 2007, 48(34): 5958–5962
CrossRef Google scholar
[32]
Liu J, Chu J, Zhu H, Xu L, Zhang Z, Zeng S, Huang Z. A feasible method for comparing the power dependent photostability of fluorescent proteins. Chinese Optics Letters, 2008, 6(12): 941–943
CrossRef Google scholar
[33]
Liu J, Pei Z, Wang L, Zhang Z, Zeng S, Huang Z L. A straightforward and quantitative approach for characterizing the photoactivation performance of optical highlighter fluorescent proteins. Applied Physics Letters, 2010, 97(20): 203701
CrossRef Google scholar
[34]
Zou L, Liu Z, Yan X, Liu Y, Fu Y, Liu J, Huang Z, Chen X, Qin J. Star-shaped D-pi-A molecules containing a 2,4,6-Tri(thiophen-2-yl)-1,3,5-triazine unit: synthesis and two-photon absorption properties. European Journal of Organic Chemistry, 2009, 2009(32): 5587–5593
CrossRef Google scholar
[35]
Wagner R. Erläuterungstaflen zur Physiologie und Entwicklungsgeschichte. Germany, Leipzig: Leopold Voss, 1839
[36]
Wood S Jr. Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Archives of Pathology, 1958, 66(4): 550–568
Pubmed
[37]
Chishima T, Miyagi Y, Wang X, Yamaoka H, Shimada H, Moossa A R, Hoffman R M. Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Research, 1997, 57(10): 2042–2047
Pubmed
[38]
Farina K L, Wyckoff J B, Rivera J, Lee H, Segall J E, Condeelis J S, Jones J G. Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Research, 1998, 58(12): 2528–2532
Pubmed
[39]
MacDonald I C, Schmidt E E, Morris V L, Chambers A F, Groom A C. Intravital videomicroscopy of the chorioallantoic microcirculation: a model system for studying metastasis. Microvascular Research, 1992, 44(2): 185–199
CrossRef Pubmed Google scholar
[40]
Araya R, Eisenthal K B, Yuste R. Dendritic spines linearize the summation of excitatory potentials. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(49): 18799–18804
CrossRef Pubmed Google scholar
[41]
Araya R, Jiang J, Eisenthal K B, Yuste R. The spine neck filters membrane potentials. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(47): 17961–17966
CrossRef Pubmed Google scholar
[42]
Ngo-Anh T J, Bloodgood B L, Lin M, Sabatini B L, Maylie J, Adelman J P. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nature Neuroscience, 2005, 8(5): 642–649
CrossRef Pubmed Google scholar
[43]
Matsumoto-Ida M, Akao M, Takeda T, Kato M, Kita T. Real-time 2-photon imaging of mitochondrial function in perfused rat hearts subjected to ischemia/reperfusion. Circulation, 2006, 114(14): 1497–1503
CrossRef Pubmed Google scholar
[44]
Gupta A, Rhodes G J, Berg D T, Gerlitz B, Molitoris B A, Grinnell B W. Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2. American Journal of Physiology, Renal Physiology, 2007, 293(1): F245–F254
CrossRef Pubmed Google scholar
[45]
Nishimura N, Schaffer C B, Friedman B, Lyden P D, Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 365–370
CrossRef Pubmed Google scholar
[46]
Schwickert T A, Lindquist R L, Shakhar G, Livshits G, Skokos D, Kosco-Vilbois M H, Dustin M L, Nussenzweig M C. In vivo imaging of germinal centres reveals a dynamic open structure. Nature, 2007, 446(7131): 83–87
CrossRef Pubmed Google scholar
[47]
Boissonnas A, Fetler L, Zeelenberg I S, Hugues S, Amigorena S. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. The Journal of Experimental Medicine, 2007, 204(2): 345–356
CrossRef Pubmed Google scholar
[48]
Jain R K. Determinants of tumor blood flow: a review. Cancer Research, 1988, 48(10): 2641–2658
Pubmed
[49]
Brown E B, Campbell R B, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain R K. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Medicine, 2001, 7(7): 864–868
CrossRef Pubmed Google scholar
[50]
Stroh M, Zimmer J P, Duda D G, Levchenko T S, Cohen K S, Brown E B, Scadden D T, Torchilin V P, Bawendi M G, Fukumura D, Jain R K. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Medicine, 2005, 11(6): 678–682
CrossRef Pubmed Google scholar
[51]
Wang W, Wyckoff J B, Frohlich V C, Oleynikov Y, Hüttelmaier S, Zavadil J, Cermak L, Bottinger E P, Singer R H, White J G, Segall J E, Condeelis J S. Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Research, 2002, 62(21): 6278–6288
Pubmed
[52]
Sahai E, Wyckoff J, Philippar U, Segall J E, Gertler F, Condeelis J. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnology, 2005, 5(1): 14
CrossRef Pubmed Google scholar
[53]
Condeelis J, Segall J E. Intravital imaging of cell movement in tumours. Nature Reviews. Cancer, 2003, 3(12): 921–930
CrossRef Pubmed Google scholar
[54]
Wang W, Wyckoff J B, Goswami S, Wang Y, Sidani M, Segall J E, Condeelis J S. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Research, 2007, 67(8): 3505–3511
CrossRef Pubmed Google scholar
[55]
Wolf K, Mazo I, Leung H, Engelke K, von Andrian U H, Deryugina E I, Strongin A Y, Bröcker E B, Friedl P. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. The Journal of Cell Biology, 2003, 160(2): 267–277
CrossRef Pubmed Google scholar
[56]
Wyckoff J B, Jones J G, Condeelis J S, Segall J E. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Research, 2000, 60(9): 2504–2511
Pubmed
[57]
Wyckoff J B, Pinner S E, Gschmeissner S, Condeelis J S, Sahai E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Current Biology: CB, 2006, 16(15): 1515–1523
CrossRef Pubmed Google scholar
[58]
Wyckoff J B, Wang Y, Lin E Y, Li J F, Goswami S, Stanley E R, Segall J E, Pollard J W, Condeelis J. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 2007, 67(6): 2649–2656
CrossRef Pubmed Google scholar
[59]
Warburg O. On the origin of cancer cells. Science, 1956, 123(3191): 309–314
CrossRef Pubmed Google scholar
[60]
Zhang Q, Piston D W, Goodman R H. Regulation of corepressor function by nuclear NADH. Science, 2002, 295(5561): 1895–1897
Pubmed
[61]
Zhang Q, Wang S Y, Nottke A C, Rocheleau J V, Piston D W, Goodman R H. Redox sensor CtBP mediates hypoxia-induced tumor cell migration. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(24): 9029–9033
CrossRef Pubmed Google scholar
[62]
Heart E, Yaney G C, Corkey R F, Schultz V, Luc E, Liu L, Deeney J T, Shirihai O, Tornheim K, Smith P J S, Corkey B E. Ca2+, NAD(P)H and membrane potential changes in pancreatic beta-cells by methyl succinate: comparison with glucose. The Biochemical Journal, 2007, 403(1): 197–205
CrossRef Pubmed Google scholar
[63]
Jung J C, Schnitzer M J. Multiphoton endoscopy. Optics Letters, 2003, 28(11): 902–904
CrossRef Pubmed Google scholar
[64]
Kim P, Puoris’haag M, Côté D, Lin C P, Yun S H. In vivo confocal and multiphoton microendoscopy. Journal of Biomedical Optics, 2008, 13(1): 010501
CrossRef Pubmed Google scholar
[65]
Koehler M J, Speicher M, Lange-Asschenfeldt S, Stockfleth E, Metz S, Elsner P, Kaatz M, König K. Clinical application of multiphoton tomography in combination with confocal laser scanning microscopy for in vivo evaluation of skin diseases. Experimental Dermatology, 2011, 20(7): 589–594
CrossRef Pubmed Google scholar
[66]
Meyer T, Bergner N, Bielecki C, Krafft C, Akimov D, Romeike B F M, Reichart R, Kalff R, Dietzek B, Popp J. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. Journal of Biomedical Optics, 2011, 16(2): 021113-1–021113-3
CrossRef Google scholar
[67]
Breunig H G, Studier H, König K. Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo. Optics Express, 2010, 18(8): 7857–7871
CrossRef Pubmed Google scholar
[68]
Chen J, Lee A, Zhao J, Wang H, Lui H, McLean D I, Zeng H. Spectroscopic characterization and microscopic imaging of extracted and in situ cutaneous collagen and elastic tissue components under two-photon excitation. Skin Research and Technology, 2009, 15(4): 418–426
CrossRef Pubmed Google scholar
[69]
Paoli J, Smedh M, Ericson M B. Multiphoton laser scanning microscopy—a novel diagnostic method for superficial skin cancers. Seminars in Cutaneous Medicine and Surgery, 2009, 28(3): 190–195
CrossRef Pubmed Google scholar
[70]
Dimitrow E, Ziemer M, Koehler M J, Norgauer J, König K, Elsner P, Kaatz M. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. The Journal of Investigative Dermatology, 2009, 129(7): 1752–1758
CrossRef Pubmed Google scholar
[71]
Piletic I R, Matthews T E, Warren W S. Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins. The Journal of Physical Chemistry A, 2010, 114(43): 11483–11491
CrossRef Pubmed Google scholar
[72]
Matthews T E, Piletic I R, Selim M A, Simpson M J, Warren W S. Pump-probe imaging differentiates melanoma from melanocytic nevi. Science Translational Medicine, 2011, 3(71): 71ra15
CrossRef Pubmed Google scholar
[73]
Matthews T E, Wilson J W, Degan S, Simpson M J, Jin J Y, Zhang J Y, Warren W S. In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature. Biomedical Optics Express, 2011, 2(6): 1576–1583
CrossRef Pubmed Google scholar
[74]
Gu M, Bao H C, Li J L. Cancer-cell microsurgery using nonlinear optical endomicroscopy. Journal of Biomedical Optics, 2010, 15(5): 050502
CrossRef Pubmed Google scholar
[75]
Li D, Zeng S, Lv X, Liu J, Du R, Jiang R, Chen W R, Luo Q. Dispersion characteristics of acousto-optic deflector for scanning Gaussian laser beam of femtosecond pulses. Optics Express, 2007, 15(8): 4726–4734
CrossRef Pubmed Google scholar
[76]
Zeng S, Li D, Lv X, Liu J, Luo Q. Pulse broadening of the femtosecond pulses in a Gaussian beam passing an angular disperser. Optics Letters, 2007, 32(9): 1180–1182
CrossRef Pubmed Google scholar
[77]
Flusberg B A, Cocker E D, Piyawattanametha W, Jung J C, Cheung E L M, Schnitzer M J. Fiber-optic fluorescence imaging. Nature Methods, 2005, 2(12): 941–950
CrossRef Pubmed Google scholar
[78]
Fu L, Gu M. Fibre-optic nonlinear optical microscopy and endoscopy. Journal of Microscopy, 2007, 226(Pt 3): 195–206
CrossRef Pubmed Google scholar
[79]
Le Harzic R, Riemann I, Weinigel M, König K, Messerschmidt B. Rigid and high-numerical-aperture two-photon fluorescence endoscope. Applied Optics, 2009, 48(18): 3396–3400
CrossRef Pubmed Google scholar
[80]
Lelek M, Suran E, Louradour F, Barthelemy A, Viellerobe B, Lacombe F. Coherent femtosecond pulse shaping for the optimization of a non-linear micro-endoscope. Optics Express, 2007, 15(16): 10154–10162
CrossRef Pubmed Google scholar
[81]
Meier R, Kromer K, Stepp H, Sroka R. A comparison of confocal and two-photon microendoscopy. In: Dossel O, Schlegel W C, eds. World Congress on Medical Physics and Biomedical Engineering, 2009, 25(6): 177–178
[82]
Llewellyn M E, Barretto R P J, Delp S L, Schnitzer M J. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature, 2008, 454(7205): 784–788
Pubmed
[83]
Paull P E, Hyatt B J, Wassef W, Fischer A H. Confocal laser endomicroscopy: a primer for pathologists. Archives of Pathology & Laboratory Medicine, 2011, 135(10): 1343–1348
CrossRef Pubmed Google scholar
[84]
Gulsen G, Yu H, Wang J, Nalcioglu O, Merritt S, Bevilacqua F, Durkin A J, Cuccia D J, Lanning R, Tromberg B J. Congruent MRI and near-infrared spectroscopy for functional and structural imaging of tumors. Technology in Cancer Research & Treatment, 2002, 1(6): 497–505
Pubmed
[85]
Ntziachristos V, Yodh A G, Schnall M D, Chance B. MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia (New York, N.Y.), 2002, 4(4): 347–354
CrossRef Pubmed Google scholar
[86]
Zhu Q, Tannenbaum S, Kurtzman S H. Optical tomography with ultrasound localization for breast cancer diagnosis and treatment monitoring. Surgical Oncology Clinics of North America, 2007, 16(2): 307–321
CrossRef Pubmed Google scholar
[87]
Zhu Q, Kurtzma S H, Hegde P, Tannenbaum S, Kane M, Huang M, Chen N G, Jagjivan B, Zarfos K. Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers. Neoplasia (New York, N.Y.), 2005, 7(3): 263–270
CrossRef Pubmed Google scholar
[88]
McCann C M, Waterman P, Figueiredo J L, Aikawa E, Weissleder R, Chen J W. Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy. NeuroImage, 2009, 45(2): 360–369
CrossRef Pubmed Google scholar

Acknowledgements

The author gratefully thanks Prof. Shaoqun Zeng from Huazhong University of Science and Technology (Wuhan, China) for his encouragement and support for this paper.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1174 KB)

Accesses

Citations

Detail

Sections
Recommended

/