Profile and roughness of electrorheological finishing optical surfaces

Haobo CHENG, Jingshi SU, Yong CHEN, Hon-Yuen TAM

PDF(1734 KB)
PDF(1734 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (3) : 306-313. DOI: 10.1007/s12200-014-0401-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Profile and roughness of electrorheological finishing optical surfaces

Author information +
History +

Abstract

This paper focuses on the process of electrorheological (ER) finishing optical surfaces. Experiments on K9 mirrors were conducted. In one experiment, the operating distance was varied over 0.5–0.8 mm with the voltage at 2000 V. The maximum peak-to-valley (PV) reduction was obtained at the distance of 0.5 mm, where the PV value was reduced from 58.71 to 25.03 nm. In another experiment, the voltage was varied over 1500–3000 V with operating distance at 0.5 mm. The final surface roughness (Ra) achieved was as low as 2.5 nm. A higher voltage produced a higher relative reduction of the Ra. These experimental results validated the process.

Keywords

electrorheological (ER) / finishing / surface roughness

Cite this article

Download citation ▾
Haobo CHENG, Jingshi SU, Yong CHEN, Hon-Yuen TAM. Profile and roughness of electrorheological finishing optical surfaces. Front. Optoelectron., 2015, 8(3): 306‒313 https://doi.org/10.1007/s12200-014-0401-y

References

[1]
Golini D, Kordonski W I, Dumas P, Hogan S J. Magnetorheological finishing (MRF) in commercial precision optics manufacturing. In: Proceedings of the SPIE, Optical Manufacturing and Testing III. 1999, 3782: 80–91
[2]
Jha S, Jain V K. Design and development of the magnetorheological abrasive flow finishing (MRAFF) process. International Journal of Machine Tools & Manufacture, 2004, 44(10): 1019–1029
CrossRef Google scholar
[3]
Shorey A B, Kordonski W, Tricard M. Magnetorheological finishing of large and lightweight optics. In: Proceedings of SPIE, Advances in Mirror Technology for X-Ray, EUV Lithography, Laser, and Other Applications II. 2004, 5533: 99–107
[4]
Umehara N, Hayashi T, Kato K. In situ observation of the behavior of abrasives in magnetic fluid grinding. Journal of Magnetism and Magnetic Materials, 1995, 149(1–2): 181–184
CrossRef Google scholar
[5]
Mori T, Hirota K, Kawashima Y. Clarification of magnetic abrasive finishing mechanism. Journal of Materials Processing Technology, 2003, 143–144: 682–686
CrossRef Google scholar
[6]
Kim J D, Choi M S. Study on magnetic polishing of free-form surfaces. International Journal of Machine Tools & Manufacture, 1997, 37(8): 1179–1187
CrossRef Google scholar
[7]
Yin S, Shinmura T. A comparative study: polishing characteristics and its mechanisms of three vibration modes in vibration-assisted magnetic abrasive polishing. International Journal of Machine Tools & Manufacture, 2004, 44(4): 383–390
CrossRef Google scholar
[8]
Kuriyagawa T, Syoji K. Development of electrorheological fluid assisted machining for 3-dimensional small parts. Journal-Japan Society for Precision Engineering, 1999, 65(1): 145–149
CrossRef Google scholar
[9]
Kuriyagawa T, Saeki M, Syoji K. Study of electrorheological fluid-assisted ultra-precision polishing for 3-dimensional small parts. In: Proceedings of the 2nd International Conference of the European Society for Precision Engineering and Nanotechnology, Turin. 2001, 738–741
[10]
Kuriyagawa T, Saeki M, Syoji K. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts. Precision Engineering, 2002, 26(4): 370–380
CrossRef Google scholar
[11]
Kim W B, Lee S J, Kim Y J, Lee E S. The electromechanical principle of electrorheological fluid-assisted polishing. International Journal of Machine Tools & Manufacture, 2003, 43(1): 81–88
CrossRef Google scholar
[12]
Kim W B, Park S J, Min B K, Lee S J. Surface finishing technique for small parts using dielectrophoretic effects of abrasive particles. Journal of Materials Processing Technology, 2004, 147(3): 377–384
CrossRef Google scholar
[13]
Kim W B, Min B K, Lee S J. Development of a padless ultraprecision polishing method using electrorheological fluid. Journal of Materials Processing Technology, 2004, 155–156: 1293–1299
CrossRef Google scholar
[14]
Zhang L, Kuriyagawa T, Kaku T, Zhao J. Investigation into electrorheological fluid-assisted polishing. International Journal of Machine Tools & Manufacture, 2005, 45(12–13): 1461–1467 
CrossRef Google scholar
[15]
Tanaka T. A study of basic characteristics of polishing using particle-type electro-rheological fluid. Key Engineering Materials, 2007, 329: 201–206
CrossRef Google scholar
[16]
Kaku T, Yoshihara N, Yan J W, Kuriyagawa T, Abiko K, Mikami Y, Noguchi M. Development of a resin-coated micro polishing tool by plasma CVD method -electrorheological fluid-assisted polishing of tungsten carbide micro aspherical molding dies. Key Engineering Materials, 2007, 329: 213–218
CrossRef Google scholar
[17]
Chen B, Cheng H, Tam H Y, Li H. Design of integrated-electrode tool for electrorheological finishing of optical glasses. Frontiers of Optoelectronics in China, 2011, 4(4): 467–471
CrossRef Google scholar

Acknowledgements

This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region (No. CityU 120610).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1734 KB)

Accesses

Citations

Detail

Sections
Recommended

/