Semitransparent organic solar cells

Furong ZHU

PDF(283 KB)
PDF(283 KB)
Front. Optoelectron. ›› 2014, Vol. 7 ›› Issue (1) : 20-27. DOI: 10.1007/s12200-014-0395-5
REVIEW ARTICLE
REVIEW ARTICLE

Semitransparent organic solar cells

Author information +
History +

Abstract

The organic solar cell technology has attracted great interests due to its potential of low cost solution process capability. Bulk heterojunction organic solar cells offer a potentially much cheaper alternative way to harness solar energy, and can be made flexible and large area. They can also be made translucent and in different colors. As a result, the inexpensive fabrication process such as solution-process techniques, mechanical flexibility, light weight and visible-light transparency features make organic solar technology attractive for application in new markets, such as smart sensors, power generating window panes, building architecture, greenhouses and outdoor lifestyle, etc. After a brief overview of basics of organic photovoltaics, the enhancement of semitransparent organic solar cells over the two competing performance indices of power conversion efficiency and transmittance will be discussed.

Keywords

organic photovoltaic / transparent electrode / optical and optimal design / optical admittance analysis

Cite this article

Download citation ▾
Furong ZHU. Semitransparent organic solar cells. Front Optoelec, 2014, 7(1): 20‒27 https://doi.org/10.1007/s12200-014-0395-5

References

[1]
Ginley D S, Green M A, Collins R T. Solar energy conversion toward 1 terawatt. Mrs Bulletin, 2008, 33(4): 355–364
CrossRef Google scholar
[2]
Slaoui A, Collins R T. Advanced inorganic materials for photovoltaics. Mrs Bulletin, 2007, 32(3): 211–218
CrossRef Google scholar
[3]
Tang C W, VanSlyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913–915
CrossRef Google scholar
[4]
Burroughs J H, Bradley D D C, Brown A R, Marks R N, MacKay K, Friend R H, Burn P L, Holmes A B. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347(6293): 593–541
[5]
Li Y Q, Tan L W, Hao X T, Ong K S, Zhu F R, Hung L S. Flexible top-emitting electroluminescent devices on polyethylene terephthalate substrates. Applied Physics Letters, 2005, 86(15): 153508-1–153508-3
CrossRef Google scholar
[6]
Bao Z A, Dodabalapur A, Lovinger A J. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Applied Physics Letters, 1996, 69(26): 4108–4110
CrossRef Google scholar
[7]
Moller S, Perlov C, Jackson W, Taussig C, Forrest S R. A polymer/semiconductor write-once read-many-times memory. Nature, 2003, 426(6963): 166–169
Pubmed
[8]
Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 2003, 93(7): 3693–3723
CrossRef Google scholar
[9]
Tang C W. Two-layer organic photovoltaic cell. Applied Physics Letters, 1986, 48(2): 183–185
CrossRef Google scholar
[10]
Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H. Photovoltaic technology: the case for thin-film solar cells. Science, 1999, 285(5428): 692–698
CrossRef Pubmed Google scholar
[11]
Yu G, Gao J, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791
CrossRef Google scholar
[12]
Halls J J M, Walsh C A, Greenham N C, Friend R H, Holmes A B. Efficient photodiodes from interpenetrating polymer networks. Nature, 1995, 376(6540): 498–500
CrossRef Google scholar
[13]
Tsuzuki T, Shirota Y, Meissner D. The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment. Solar Energy Materials and Solar Cells, 2000, 61(1): 1–8
CrossRef Google scholar
[14]
Zhang F, Svensson M, Inganas O. Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes. Advanced Materials, 2001, 13(24): 1871–1874
CrossRef Google scholar
[15]
Kietzke T, Neher D, Landfester K, Montenegro R, Güntner R, Scherf U. Novel approaches to polymer blends based on polymer nanoparticles. Nature Materials, 2003, 2(6): 408–412
CrossRef Pubmed Google scholar
[16]
Marks R N, Halls J J M, Bradley D D C, Friend R H, Holmes A B. The photovoltaic response in poly(p-phenylene vinylene) thin-film devices. Journal of Physics Condensed Matter, 1994, 6(7): 1379–1394
CrossRef Google scholar
[17]
Barth S, Bässler H, Rost H, Hörhold H H. Intrinsic photoconduction in PPV-type conjugated polymers. Physical Review Letters, 1997, 79(22): 4445–4448
CrossRef Google scholar
[18]
Miranda P B, Moses D, Heeger A J. Ultrafast photogeneration of charged polarons in conjugated polymers. Physical Review B: Condensed Matter and Materials Physics, 2001, 64(8): 81201-1–81201-4
CrossRef Google scholar
[19]
Brabec C J, Zerza G, Cerullo G, De Silvestri S, Luzzati S, Hummele J C, Sariciftci N S. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chemical Physics Letters, 2001, 340(3–4): 232–236
CrossRef Google scholar
[20]
Orenstein J. In: Skotheim T J, ed. Handbook on Conducting Polymers, Vol 2, p1297; or Kuzmany H, Mehring M, Roth S, eds. Springer Series in Solid State Sciences 76, Electronic Properties of Conjugated Polymers
[21]
Vardeny Z, Tauc J. Method for direct determination of the effective correlation energy of defects in semiconductors: optical modulation spectroscopy of dangling bonds. Physical Review Letters, 1985, 54(16): 1844–1847
CrossRef Pubmed Google scholar
[22]
Vardeny Z, Ehrenfreund E, Brafman O, Nowak M, Schaffer H, Heeger A J, Wudl F. Photogeneration of confined soliton pairs (bipolarons) in polythiophene. Physical Review Letters, 1986, 56(6): 671–674
CrossRef Pubmed Google scholar
[23]
Österbacka R, An C P, Jiang X M, Vardeny Z V. Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science, 2000, 287(5454): 839–842
CrossRef Pubmed Google scholar
[24]
Jiang X M, Österbacka R, Korovyanko O, An C P, Horovitz B, Janssen R A J, Vardeny Z V. Spectroscopic studies of photoexcitations in regioregular and regiorandom polythiophene films. Advanced Functional Materials, 2002, 12(9): 587–597
CrossRef Google scholar
[25]
De S, Pascher T, Maiti M, Jespersen K G, Kesti T, Zhang F, Inganäs O, Yartsev A, Sundström V. Geminate charge recombination in alternating polyfluorene copolymer/fullerene blends. Journal of the American Chemical Society, 2007, 129(27): 8466–8472
CrossRef Pubmed Google scholar
[26]
Brabec C J, Zerza G, Cerullo G, De Silvestri S, Luzzati S, Hummelen J C, Sariciftci S. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chemical Physics Letters, 2001, 340(3-4): 232–236
CrossRef Google scholar
[27]
Clarke T, Ballantyne A, Jamieson F, Brabec C, Nelson J, Durrant J. Transient absorption spectroscopy of charge photogeneration yields and lifetimes in a low bandgap polymer/fullerene film. Chemical Communications (Cambridge), 2009, 1(1): 89–91
CrossRef Google scholar
[28]
Hwang I W, Moses D, Heeger A J. Photoinduced carrier generation in P3HT/PCBM bulk heterojunction materials. Journal of Physical Chemistry C, 2008, 112(11): 4350–4354
CrossRef Google scholar
[29]
Hwang I W, Soci C, Moses D, Zhu Z, Waller D, Gaudiana R, Brabex C J, Heeger A J. Ultrafast electron transfer and decay dynamics in a small band gap bulk heterojunction material. Advanced Materials, 2007, 19(17): 2307–2312
CrossRef Google scholar
[30]
Clarke T M, Ballantyne A M, Nelson J, Bradley D D C, Durrant J. Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends. Advanced Functional Materials, 2008, 18(24): 4029–4035
CrossRef Google scholar
[31]
Saricifci N S, Smilowitz L, Heeger A J, Wudi F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1994, 258(5087): 1474–1476
CrossRef Google scholar
[32]
Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials, 2007, 6(7): 497–500
CrossRef Pubmed Google scholar
[33]
Wang X Z, Tam H L, Yong K S, Chen Z K, Zhu F R. High performance optoelectronic device based on semitransparent organic photovoltaic cell integrated with organic light-emitting diode. Organic Electronics, 2011, 12(8): 1429–1433
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(283 KB)

Accesses

Citations

Detail

Sections
Recommended

/