Hydrazine processed Cu2SnS3 thin film and their application for photovoltaic devices

Jun HAN, Ying ZHOU, Yang Tian, Ziheng HUANG, Xiaohua WANG, Jie ZHONG, Zhe XIA, Bo YANG, Haisheng SONG, Jiang TANG

PDF(633 KB)
PDF(633 KB)
Front. Optoelectron. ›› 2014, Vol. 7 ›› Issue (1) : 37-45. DOI: 10.1007/s12200-014-0389-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Hydrazine processed Cu2SnS3 thin film and their application for photovoltaic devices

Author information +
History +

Abstract

Copper tin sulfide (Cu2SnS3) was a potential earth abundant absorber material for photovoltaic device application. In this contribution, triclinic Cu2SnS3 film with phase pure composition and large grain size was fabricated from a hydrazine solution process using Cu, Sn and S as the precursors. Absorption measurement revealed this Cu2SnS3 film had a direct optical band gap of 0.88 eV, and Hall effect measurement indicated the film was p-type with hole mobility of 0.86 cm2/Vs. Finally Mo/Cu2SnS3/CdS/ZnO/AZO/Au was produced and the best device efficiency achieved was 0.78%. Also, this device showed improved device performance during ambient storage. This study laid some foundation for the further improvement of Cu2SnS3 solar cell.

Keywords

copper tin sulfide (Cu2SnS3) / solar cell / hydrazine / solution process / triclinic

Cite this article

Download citation ▾
Jun HAN, Ying ZHOU, Yang Tian, Ziheng HUANG, Xiaohua WANG, Jie ZHONG, Zhe XIA, Bo YANG, Haisheng SONG, Jiang TANG. Hydrazine processed Cu2SnS3 thin film and their application for photovoltaic devices. Front Optoelec, 2014, 7(1): 37‒45 https://doi.org/10.1007/s12200-014-0389-3

References

[1]
Zhai Y T, Chen S, Yang J H, Xiang H J, Gong X G, Walsh A, Kang J, Wei S H. Structural diversity and electronic properties of Cu2SnX3 (X= S, Se): a first-principles investigation. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(7): 075213-075216
CrossRef Google scholar
[2]
Bouaziz M, Ouerfelli J, Srivastava S K, Bernede J C, Amlouk M. Growth of Cu2SnS3 thin films by solid reaction under sulphur atmosphere. Vacuum, 2011, 85(8): 783-786
CrossRef Google scholar
[3]
Avellaneda D, Nair M T S, Nair P K. Cu2SnS3 and Cu4SnS4 thin films via chemical deposition for photovoltaic application. Journal of the Electrochemical Society, 2010, 157(6): D346-D352
CrossRef Google scholar
[4]
Chen S Y, Walsh A, Gong X G, Wei S H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Advanced Materials, 2013, 25(11): 1522-1539
CrossRef Pubmed Google scholar
[5]
Chen S Y, Wang L W, Walsh A, Gong X G, Wei S H. Abundance of CuZn+ SnZn and 2CuZn+ SnZn defect clusters in kesterite solar cells. Applied Physics Letters, 2012, 101(22): 223901-223904
CrossRef Google scholar
[6]
Tiwari D, Chaudhuri T K, Shripathi T, Deshpande U, Rawat R. Non-toxic, earth-abundant 2% efficient Cu2SnS3 solar cell based on tetragonal films direct-coated from single metal-organic precursor solution. Solar Energy Materials and Solar Cells, 2013, 113: 165-170
CrossRef Google scholar
[7]
Chen Q M, Dou X M, Ni Y, Cheng S Y, Zhuang S L. Study and enhance the photovoltaic properties of narrow-bandgap Cu2SnS3 solar cell by p-n junction interface modification. Journal of Colloid and Interface Science, 2012, 376(1): 327-330
CrossRef Pubmed Google scholar
[8]
Berg D M, Djemour R, Gutay L, Zoppi G, Siebentritt S, Dale P J. Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films, 2012, 520(19): 6291-6294
CrossRef Google scholar
[9]
Koike J, Chino K, Aihara N, Araki H, Nakamura R, Jimbo K, Katagiri H. Cu2SnS3 thin-film solar cells from electroplated precursors. Japanese Journal of Applied Physics, 2012, 51(10): 10NC34-1-10NC34-3
[10]
Mitzi D B. Solution processing of chalcogenide semiconductors via dimensional reduction. Advanced Materials, 2009, 21(31): 3141-3158
CrossRef Google scholar
[11]
Mitzi D B, Kosbar L L, Murray C E, Copel M, Afzali A. High-mobility ultrathin semiconducting films prepared by spin coating. Nature, 2004, 428(6980): 299-303
CrossRef Pubmed Google scholar
[12]
Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B. Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells. Advanced Energy Materials., 2013, 3(1): 34-38
CrossRef Google scholar
[13]
Todorov T K, Reuter K B, Mitzi D B. High-efficiency solar cell with Earth-abundant liquid-processed absorber. Advanced Materials, 2010, 22(20): E156-E159
CrossRef Pubmed Google scholar
[14]
Contreras M A, Romero M J, To B, Hasoon F, Noufi R, Ward S, Ramanathan K. Optimization of CBD CdS process in high-efficiency Cu(In,Ga)Se2-based solar cells. Thin Solid Films, 2002, 403-404: 204-211
CrossRef Google scholar
[15]
Yang W B, Duan H S, Bob B, Zhou H P, Lei B, Chung C H, Li S H, Hou W W, Yang Y. Novel solution processing of high-efficiency Earth-abundant Cu2 ZnSn(S,Se)4 solar cells. Advanced Materials, 2012, 24(47): 6323-6329
CrossRef Pubmed Google scholar
[16]
Yuan M, Mitzi D B, Liu W, Kellock A J, Chey S J, Deline V R. Optimization of CIGS-based PV dedvice through antimony doping. Chemistry of Materials, 2010, 22(2): 285-287
CrossRef Google scholar
[17]
Cao Q, Gunawan O, Copel M, Reuter K B, Chey S J, Deline V R, Mitzi D B. Defects in Cu(In,Ga)Se2 chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance. Advanced Energy Materials., 2011, 1(5): 845-853
CrossRef Google scholar
[18]
Redinger A, Berg D M, Dale P J, Siebentritt S. The consequences of kesterite equilibria for efficient solar cells. Journal of the American Chemical Society, 2011, 133(10): 3320-3323
CrossRef Pubmed Google scholar
[19]
Tang J, Brzozowski L, Barkhouse D A R, Wang X H, Debnath R, Wolowiec R, Palmiano E, Levina L, Pattantyus-Abraham A G, Jamakosmanovic D, Sargent E H. Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. ACS Nano, 2010, 4(2): 869-878
CrossRef Pubmed Google scholar
[20]
Tian Q W, Xu X F, Han L B, Tang M H, Zou R J, Chen Z G, Yu M H, Yang J M, Hu J Q. Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm, 2012, 14(11): 3847-3850
CrossRef Google scholar
[21]
Berg D M, Djemour R, Gütay L, Siebentritt S, Dale P J, Fontane X, Izquierdo-Roca V, Pérez-Rodriguez A. Raman analysis of monoclinic Cu2SnS3 thin films. Applied Physics Letters, 2012, 100(19): 192103-192104
CrossRef Google scholar
[22]
Fernandes P A, Salomé P M P, Cunha A F. A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. Journal of Physics D, Applied Physics, 2010, 43(21): 215403, 215403-215411
CrossRef Google scholar
[23]
Chino K, Koike J, Eguchi S, Araki H, Nakamura R, Jimbo K, Katagiri H. Preparation of Cu2SnS3 thin films by sulfurization of Cu/Sn stacked precursors. Japanese Journal of Applied Physics, 2012, 51(10): 10NC35-1-10NC35-4
[24]
Umehara M, Takeda Y, Motohiro T, Sakai T, Awano H, Maekawa R. Cu2Sn1-xGexS3 (x= 0.17) thin-film solar cells with high conversion efficiency of 6.0%. Applied Physics Express, 2013, 6(4): 045501-045503
CrossRef Google scholar
[25]
Naumkin A V, Kraut-Vass A, Gaarenstroom S W, Powell C J. NIST X-ray Photoelectron Spectroscopy Database, Version 4.1. 2013

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 61274055, 61322401, 61006065, 61076039 and 61204065), National 1000 Young Talents project and theβFundamental ResearchβFunds forβtheβCentralβUniversities (HUST: 0118187043). The authors thank the Analytical and Testing Center of Huazhong University of Sciences and Technology (HUST) and the Center of Micro-Fabrication and Characterization (CMFC) of Wuhan National Laboratory for Optoelectronics (WNLO) for facility access. We would also like to acknowledge Innovative Technology and Beijing Technol Science Co. Ltd for glovebox and thermal evaporator technical assistance, respectively.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(633 KB)

Accesses

Citations

Detail

Sections
Recommended

/