Recent advances in development of vertical-cavity based short pulse source at 1.55 μm

Zhuang ZHAO, Sophie BOUCHOULE, Jean-Christophe HARMAND, Gilles PATRIARCHE, Guy AUBIN, Jean-Louis OUDAR

PDF(969 KB)
PDF(969 KB)
Front. Optoelectron. ›› 2014, Vol. 7 ›› Issue (1) : 1-19. DOI: 10.1007/s12200-014-0387-5
REVIEW ARTICLE
REVIEW ARTICLE

Recent advances in development of vertical-cavity based short pulse source at 1.55 μm

Author information +
History +

Abstract

This paper reviews and discusses recent developments in passively mode-locked vertical external cavity surface emitting lasers (ML-VECSELs) for short pulse generation at 1.55 µm. After comparing ML-VECSELs to other options for short pulse generation, we reviewed the results of ML-VECSELs operating at telecommunication wavelength and point out the challenges in achieving sub-picosecond operation from a ML-VECSEL at 1.55 µm. We described our recent work in the VECSELs and semiconductor saturable absorber mirrors (SESAMs), their structure design, optimization and characterization, with the goal of moving the pulse width from picosecond to sub-picosecond.

Keywords

semiconductor laser / vertical external cavity surface emitting laser (VECSEL) / indium phosphide / heat dissipation / saturable absorber mirror / mode-locking

Cite this article

Download citation ▾
Zhuang ZHAO, Sophie BOUCHOULE, Jean-Christophe HARMAND, Gilles PATRIARCHE, Guy AUBIN, Jean-Louis OUDAR. Recent advances in development of vertical-cavity based short pulse source at 1.55 µm. Front Optoelec, 2014, 7(1): 1‒19 https://doi.org/10.1007/s12200-014-0387-5

References

[1]
Mollenauer L F, Mamyshev P V, Gripp J, Neubelt M J, Mamysheva N, Grüner-Nielsen L, Veng T. Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons. Optics Letters, 2000, 25(10): 704-706.
CrossRef Pubmed Google scholar
[2]
Miller D A B. Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE, 2000, 88(6): 728-749
CrossRef Google scholar
[3]
Mule A V, Glytsis E N, Gaylord T K, Meindl J D. Electrical and optical clock distribution networks for gigascale microprocessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2002, 10(5): 582-594
CrossRef Google scholar
[4]
Aisawa S, Sakamoto T, Fukui M, Kani J, Jinno M, Oguchi K. Ultra-wideband, long distance WDM demonstration of 1 Tbit/s (50×20 Gbit/s) 600 km transmission using 1550 and 1580 nm wavelength bands. Electronics Letters, 1998, 34(11): 1127-1128
CrossRef Google scholar
[5]
Keeler G A, Nelson B E, Agarwal D, Debaes C, Helman N C, Bhatnagar A, Miller D A B. The benefits of ultrashort optical pulses in optically interconnected systems. IEEE Journal on Selected Topics in Quantum Electronics, 2003, 9(2): 477-485
CrossRef Google scholar
[6]
Juodawlkis P W, Twichell J C, Betts G E, Hargreaves J J, Younger R D, Wasserman J L, O’Donnell F J, Ray K G, Williamson R C. Optically sampled analog-to-digital converters. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(10): 1840-1853
CrossRef Google scholar
[7]
Lau K Y, Ury I, Yariv A. Passive and active mode locking of a semiconductor laser without an external cavity. Applied Physics Letters, 1985, 46(12): 1117-1119
CrossRef Google scholar
[8]
Hou L, Haji M, Akbar J, Qiu B, Bryce A C. Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers. Optics Letters, 2011, 36(6): 966-968
CrossRef Pubmed Google scholar
[9]
Merghem K, Akrout A, Martinez A, Aubin G, Ramdane A, Lelarge F, Duan G H. Pulse generation at 346 GHz using a passively mode locked quantum-dash-based laser at 1.55 µm. Applied Physics Letters, 2009, 94(2): 021107-1-021107-3
CrossRef Google scholar
[10]
Nakazawa M, Yamamoto T, Tamura K R. 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator. Electronics Letters, 2000, 36(24): 2027-2029
CrossRef Google scholar
[11]
Xu C, Liu X, Mollenauer L F, Wei X. Comparison of return-to-zero differential phase-shift keying and ON-OFF keying in long-haul dispersion managed transmission. IEEE Photonics Technology Letters, 2003, 15(4): 617-619
CrossRef Google scholar
[12]
Martinez A, Yamashita S. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Optics Express, 2011, 19(7): 6155-6163
CrossRef Pubmed Google scholar
[13]
Keller U, Tropper A C. Passively modelocked surface-emitting semiconductor lasers. Physics Reports, 2006, 429(2): 67-120
CrossRef Google scholar
[14]
Oehler A E H, Südmeyer T, Weingarten K J, Keller U. 100 GHz passively mode-locked Er:Yb:glass laser at 1.5 µm with 1.6-ps pulses. Optics Express, 2008, 16(26): 21930-21935
CrossRef Google scholar
[15]
Hoogland S, Dhanjal S, Tropper A C, Roberts J S, Häring R, Paschotta R, Morier-Genoud F, Keller U. Passively mode-locked diode-pumped surface-emitting semiconductor laser. IEEE Photonics Technology Letters, 2000, 12(9): 1135-1137
CrossRef Google scholar
[16]
Wilcox K G, Quarterman A H, Apostolopoulos V, Beere H E, Farrer I, Ritchie D A, Tropper A C. 175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser. Optics Express, 2012, 20(7): 7040-7045
CrossRef Pubmed Google scholar
[17]
Quarterman A H, Wilcox K G, Apostolopoulos V, Mihoubi Z, Elsmere S P, Farrer I, Ritchie D A, Tropper A C. A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nature Photonics, 2009, 3(12): 729-731
CrossRef Google scholar
[18]
Rudin B, Wittwer V J, Maas D J H C, Hoffmann M, Sieber O D, Barbarin Y, Golling M, Südmeyer T, Keller U. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power. Optics Express, 2010, 18(26): 27582-27588
CrossRef Pubmed Google scholar
[19]
Wilcox K G, Quarterman A H, Beere H, Ritchie D A, Tropper A C. High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser. IEEE Photonics Technology Letters, 2010, 22(14): 1021-1023
CrossRef Google scholar
[20]
Garnache A, Hoogland S, Tropper A C, Sagnes I, Saint-Girons G, Roberts J S. Sub-500-fs soliton pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power. Applied Physics Letters, 2002, 80(21): 3892-3894
CrossRef Google scholar
[21]
Klopp P, Griebner U, Zorn M, Klehr A, Liero A, Weyers M, Erbert G. Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier. Optics Express, 2009, 17(13): 10820-10834
CrossRef Pubmed Google scholar
[22]
Aschwanden A, Lorenser D, Unold H J, Paschotta R, Gini E, Keller U. 2.1-W picosecond passively mode-locked external-cavity semiconductor laser. Optics Letters, 2005, 30(3): 272-274
CrossRef Pubmed Google scholar
[23]
Haring R, Paschotta R, Aschwanden A, Gini E, Morier-Genoud F, Keller U. High-power passively mode-locked semiconductor lasers. IEEE Journal of Quantum Electronics, 2002, 38(9): 1268-1275
CrossRef Google scholar
[24]
Hoogland S, Garnache A, Sagnes I, Roberts J S, Tropper A C. 10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser. IEEE Photonics Technology Letters, 2005, 17(2): 267-269
CrossRef Google scholar
[25]
Aschwanden A, Lorenser D, Unold H J, Paschotta R, Gini E, Keller U. 10-GHz passively mode-locked surface emitting semiconductor laser with 1.4-W average output power. Applied Physics Letters, 2005, 86(13): 131102-1-131102-33
CrossRef Google scholar
[26]
Lorenser D, Unold H J, Maas D J H C, Aschwanden A, Grange R, Paschotta R, Ebling D, Gini E, Keller U. Towards wafer-scale integration of high repetition rate passively modelocked surface-emitting semiconductor lasers. Applied Physics B, Lasers and Optics, 2004, 79(8): 927-932
CrossRef Google scholar
[27]
Lorenser D, Maas D J H C, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D, Keller U. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power. IEEE Journal of Quantum Electronics, 2006, 42(8): 838-847
CrossRef Google scholar
[28]
Hoogland S, Garnache A, Sagnes I, Paldus B, Weingarten K J, Grange R, Haiml M, Paschotta R, Keller U, Tropper A C. Picosecond pulse generation with 1.5 μm passively modelocked surface-emitting semiconductor laser. Electronics Letters, 2003, 39(11): 846-847
CrossRef Google scholar
[29]
Lindberg H, Sadeghi M, Westlund M, Wang S M, Larsson A, Strassner M, Marcinkevicius S. Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber. Optics Letters, 2005, 30(20): 2793-2795
CrossRef Pubmed Google scholar
[30]
Saarinen E J, Puustinen J, Sirbu A, Mereuta A, Caliman A, Kapon E, Okhotnikov O G. Power-scalable 1.57 µm mode-locked semiconductor disk laser using wafer fusion. Optics Letters, 2009, 34(20): 3139-3141
CrossRef Pubmed Google scholar
[31]
Khadour A, Bouchoule S, Aubin G, Harmand J C, Decobert J, Oudar J L. Ultrashort pulse generation from 1.56 µm mode-locked VECSEL at room temperature. Optics Express, 2010, 18(19): 19902-19913
CrossRef Pubmed Google scholar
[32]
Kuznetsov M. VECSEL Semiconductor Lasers: A Path to High-Power, Quality Beam and UV to IR Wavelength by Design. In: Okhotnikov O G, ed. Semiconductor Disk Lasers: Physics and Technology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010
[33]
Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T, Keller U. Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode. Optics Letters, 2008, 33(22): 2719-2721
CrossRef Google scholar
[34]
Lindberg H, Strassner M, Bengtsson J, Larsson A. InP-based optically pumped VECSEL operating CW at 1550 nm. IEEE Photonics Technology Letters, 2004, 16(2): 362-364
CrossRef Google scholar
[35]
Lindberg H, Strassner M, Gerster E, Larsson A. 0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm. Electronics Letters, 2004, 40(10): 601-602
CrossRef Google scholar
[36]
Rautiainen J, Lyytikäinen J, Sirbu A, Mereuta A, Caliman A, Kapon E, Okhotnikov O G. 2.6 W optically-pumped semiconductor disk laser operating at 1.57-µm using wafer fusion. Optics Express, 2008, 16(26): 21881-21886
CrossRef Pubmed Google scholar
[37]
Tourrenc J P, Bouchoule S, Khadour A, Harmand J C, Decobert J, Lagay N, Lafosse X, Sagnes I, Leroy L, Oudar J L. Thermal optimization of 1.55 µm OP-VECSEL with hybrid metal-metamorphic mirror for single-mode high power operation. Optical and Quantum Electronics, 2008, 40(2-4): 155-165
CrossRef Google scholar
[38]
Lindberg H, Strassner M, Bengtsson J, Larsson A. High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader. IEEE Photonics Technology Letters, 2004, 16(5): 1233-1235
CrossRef Google scholar
[39]
Zhao Z, Bouchoule S, Ferlazzo L, Sirbu A, Mereuta A, Kapon E, Galopin E, Harmand J C, Decobert J, Oudar J L. Cost-effective thermally-managed 1.55-µm VECSEL with hybrid mirror on copper substrate. IEEE Journal of Quantum Electronics, 2012, 48(5): 643-650
CrossRef Google scholar
[40]
Kemp A J, Valentine G J, Hopkins J M, Hastie J E, Smith S A, Calvez S, Dawson M D, Burns D. Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach. IEEE Journal of Quantum Electronics, 2005, 41(2): 148-155
CrossRef Google scholar
[41]
Maclean A J, Birch R B, Roth P W, Kemp A J, Burns D. Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders. Journal of the Optical Society of America. B, Optical Physics, 2009, 26(12): 2228-2236
CrossRef Google scholar
[42]
Lindberg H, Larsson A, Strassner M. Single-frequency operation of a high-power, long-wavelength semiconductor disk laser. Optics Letters, 2005, 30(17): 2260-2262
CrossRef Pubmed Google scholar
[43]
Bousseksou A, Bouchoule S, El Kurdi M, Strassner M, Sagnes I, Crozat P, Jacquet J. Fabrication and characterization of 1.55µm single transverse mode large diameter electrically pumped VECSEL. Optical and Quantum Electronics, 2007, 38(15): 1269-1278
CrossRef Google scholar
[44]
Caliman A, Mereuta A, Suruceanu G, Iakovlev V, Sirbu A, Kapon E. 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band. Optics Express, 2011, 19(18): 16996-17001
CrossRef Pubmed Google scholar
[45]
Zhao Z, Bouchoule S, Galopin E, Ferlazzo L, Patriarche G, Harmand J C, Decobert J, Oudar J L. Thermal management in 1.55µm InP-based VECSELs: heteroepitaxy of GaAs-based mirror and integration with electroplated substrate. In: French Symposium on Emerging Technologies for Micro- and Nano-fabrication, France, 2013
[46]
Paschotta R, Keller U. Passive mode locking with slow saturable absorbers. Applied Physics B, Lasers and Optics, 2001, 73(7): 653-662
CrossRef Google scholar
[47]
Keller U. Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Applied Physics B, Lasers and Optics, 2010, 100(1): 15-25
CrossRef Google scholar
[48]
Keller U, Knox W H, Roskos H. Coupled-cavity resonant passive mode-locked Ti:sapphire laser. Optics Letters, 1990, 15(23): 1377-1379
CrossRef Pubmed Google scholar
[49]
Keller U. Ultrafast all-solid state laser technology. Applied Physics B, Lasers and Optics, 1994, 58(5): 347-363
CrossRef Google scholar
[50]
Haiml M, Siegner U, Morier-Genoud F, Keller U, Luysberg M, Lutz R C, Specht P, Weber E R. Optical nonlinearity in low-temperature-grown GaAs: microscopic limitations and optimization strategies. Applied Physics Letters, 1999, 74(21): 3134-3136
CrossRef Google scholar
[51]
Lamprecht K F, Juen S, Palmetshofer L, Hopfel R A. Ultrashort carrier lifetimes in H+ bombarded InP. Applied Physics Letters, 1991, 59(8): 926-928
CrossRef Google scholar
[52]
Mangeney J, Choumane H, Patriarche G, Leroux G, Aubin G, Harmand J C, Oudar J L, Bernas H. Comparison of light- and heavy-ion-irradiated quantum-wells for use as ultrafast saturable absorbers. Applied Physics Letters, 2001, 79(17): 2722-2724
CrossRef Google scholar
[53]
Lugagne Delpon E, Oudar J L, Bouché N, Raj R, Shen A, Stelmakh N, Lourtioz J M. Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells. Applied Physics Letters, 1998, 72(7): 759-761
CrossRef Google scholar
[54]
Joulaud L, Mangeney J, Lourtioz J M, Crozat P, Patriarche G. Thermal stability of ion irradiated InGaAs with (sub-) picosecond carrier lifetime. Applied Physics Letters, 2003, 82(6): 856-858
CrossRef Google scholar
[55]
Khadour A. Source d'impulsions brèves à 1.55 μm en laser à cavité verticale externe pour application à l'échantillonnage optique linéaire. Dissertation for the Doctoral Degree. France: École Polytechnique, 2009
[56]
Gupta S, Whitaker J F, Mourou G A. Ultrafast carrier dynamics in III–V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures. IEEE Journal of Quantum Electronics, 1992, 28(10): 2464-2472
CrossRef Google scholar
[57]
Chin A, Chen W J, Ganikhanov F, Lin G R, Shieh J M, Pan C L, Hsieh K C. Microstructure and subpicosecond photoresponse in GaAs grown by molecular beam epitaxy at very low temperatures. Applied Physics Letters, 1996, 69(3): 397-399
CrossRef Google scholar
[58]
Okuno T, Masumoto Y, Ito M, Okamoto H. Large optical nonlinearity and fast response time in low-temperature grown GaAs/AlAs multiple quantum wells. Applied Physics Letters, 2000, 77(1): 58-60
CrossRef Google scholar
[59]
Gupta S, Frankel M Y, Valdmanis J A, Whitaker J F, Mourou G A, Smith F W, Calawa A R. Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures. Applied Physics Letters, 1991, 59(25): 3276-3278
CrossRef Google scholar
[60]
Harmon E S, Melloch M R, Woodall J M, Nolte D D, Otsuka N, Chang C L. Carrier lifetime versus anneal in low temperature growth GaAs. Applied Physics Letters, 1993, 63(16): 2248-2250
CrossRef Google scholar
[61]
Takahashi R, Kawamura Y, Kagawa T, Iwamura H. Ultrafast 1.55-μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells. Applied Physics Letters, 1994, 65(14): 1790-1792
CrossRef Google scholar
[62]
Okuno T, Masumoto Y, Sakuma Y, Hayasaki Y, Okamoto H. Femtosecond response time in beryllium-doped low-temperature-grown GaAs/AlAs multiple quantum wells. Applied Physics Letters, 2001, 79(6): 764-766
CrossRef Google scholar
[63]
Sderström D, Marcinkevicius S, Karlsson S, Lourdudoss S. Carrier trapping due to Fe3+/Fe2+ in epitaxial InP. Applied Physics Letters, 1997, 70(25): 3374-3376
CrossRef Google scholar
[64]
Gicquel-Guézo M, Loualiche S, Even J, Labbe C, Dehaese O, Le Corre A, Folliot H, Pellan Y. 290 fs switching time of Fe-doped quantum well saturable absorbers in a microcavity in 1.55 µm range. Applied Physics Letters, 2004, 85(24): 5926-5928
CrossRef Google scholar
[65]
Kondow M, Uomi K, Hosomi K, Mozume T. Gas-source molecular beam epitaxy of GaNxAs1-x using a N radical as the N source. Japanese Journal of Applied Physics, 1994, 33(8A): L1056-L1058
CrossRef Google scholar
[66]
Yang X, Héroux J B, Mei L F, Wang W I. InGaAsNSb/GaAs quantum wells for 1.55 μm lasers grown by molecular-beam epitaxy. Applied Physics Letters, 2001, 78(26): 4068-4070
CrossRef Google scholar
[67]
Härkönen A, Jouhti T, Tkachenko N V, Lemmetyinen H, Ryvkin B, Okhotnikov O G, Sajavaara T, Keinonen J. Dynamics of photoluminescence in GaInNAs saturable absorber mirrors. Applied Physics. A, Materials Science & Processing, 2003, 77(7): 861-863
CrossRef Google scholar
[68]
Le Dû M, Harmand J C, Meunier K, Patriarche G, Oudar J L. Growth of GaNxAs1-x atomic monolayers and their insertion in the vicinity of GaInAs quantum wells. IEE Proceedings- Optoelectronics, 2004, 151(5): 254-258
CrossRef Google scholar
[69]
Dû M L, Harmand J C, Mauguin O, Largeau L, Travers L, Oudar J L. Quantum-well saturable absorber at 1.55 μm on GaAs substrate with a fast recombination rate. Applied Physics Letters, 2006, 88(20): 201110-1-201110-3
CrossRef Google scholar
[70]
Zhao Z, Bouchoule S, Song J Y, Galopin E, Harmand J C, Decobert J, Aubin G, Oudar J L. Subpicosecond pulse generation from a 1.56 μm mode-locked VECSEL. Optics Letters, 2011, 36(22): 4377-4379
CrossRef Pubmed Google scholar
[71]
Cojocaru E, Julea T, Herisanu N. Stability and astigmatic compensation analysis of five- and six- or seven-mirror cavities for mode-locked dye lasers. Applied Optics, 1989, 28(13): 2577-2580
CrossRef Pubmed Google scholar
[72]
Li K K, Dienes A, Whinnery J R. Stability and astigmatic compensation analysis of five-mirror cavity for mode-locked dye lasers. Applied Optics, 1981, 20(3): 407-411
CrossRef Pubmed Google scholar
[73]
Anctil G, McCarthy N, Piché M. Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis. Applied Optics, 2000, 39(36): 6787-6798
CrossRef Pubmed Google scholar
[74]
Hoffmann M, Sieber O D, Maas D J H C, Wittwer V J, Golling M, Südmeyer T, Keller U. Experimental verification of soliton-like pulse-shaping mechanisms in passively modelocked VECSELs. Optics Express, 2010, 18(10): 10143-10153
CrossRef Google scholar
[75]
Sieber O D, Hoffmann M, Wittwer V J, Mangold M, Golling M, Tilma B W, Südmeyer T, Keller U. Experimentally verified pulse formation model for high-power femtosecond VECSELs. Applied Physics B, Lasers and Optics, 2013, 113(1): 133-145
CrossRef Google scholar

Acknowledgements

The authors thank Dr. Jean Decobert of Alcatel Thales 3-5lab for fruitful discussions and for the epitaxy of the InP-based active region in the VECSEL structure. Part of this work has been funded by Agence Nationale de la Recherche (ANR) in the framework of TONICS project. Z. Zhao was financially supported by China Scholarship Council for this work. LPN is a member of RENATECH national network of large micro-nanofabrication facilities.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(969 KB)

Accesses

Citations

Detail

Sections
Recommended

/