Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics

Charles CAER, Xavier LE ROUX, Samuel SERNA, Weiwei ZHANG, Laurent VIVIEN, Eric CASSAN

PDF(1259 KB)
PDF(1259 KB)
Front. Optoelectron. ›› 2014, Vol. 7 ›› Issue (3) : 376-384. DOI: 10.1007/s12200-013-0384-0
RESEARCH ARTICLE

Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics

Author information +
History +

Abstract

This paper investigates the slow light propagation in silicon on insulator wide slot photonic crystal waveguides (PCWs). Two design schemes are presented, relying on the dispersion engineering of hole lattice and slot, respectively. Mode patterns and band diagrams are calculated by 3D-plane wave expansion method. Then, coupling and slow light propagations are modeled using finite difference time domain method in a full Mach-Zehnder interferometer (MZI). Results show high amplitudes interference fringes and high coupling efficiencies. Fabrication and measurement of devices lead to slow light propagation with group indices above 50, while multiple scattering and localized modes near the band edge also observed. This study provides insights for losses in hollow core slot high group index waveguides.

Keywords

silicon photonics / photonic crystals (PC) / slot waveguides / slow waves

Cite this article

Download citation ▾
Charles CAER, Xavier LE ROUX, Samuel SERNA, Weiwei ZHANG, Laurent VIVIEN, Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics. Front. Optoelectron., 2014, 7(3): 376‒384 https://doi.org/10.1007/s12200-013-0384-0

References

[1]
Baba T. Slow light in photonic crystals. Nature Photonics, 2008, 2(8): 465–473
CrossRef Google scholar
[2]
Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 2012, 6(4): 248–252
CrossRef Google scholar
[3]
Monat C, Corcoran B, Pudo D, Ebnali-Heidar M, Grillet C, Pelusi M D, Moss D J, Eggleton B J, White T P, O’Faolain L, Kauss T F. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 344–356
CrossRef Google scholar
[4]
Frandsen L H, Lavrinenko A V, Fage-Pedersen J, Borel P I. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Optics Express, 2006, 14(20): 9444–9450
CrossRef Pubmed Google scholar
[5]
Kubo S, Mori D, Baba T. Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Optics Letters, 2007, 32(20): 2981–2983
CrossRef Pubmed Google scholar
[6]
Hao R, Cassan E, Kurt H, Le Roux X, Marris-Morini D, Vivien L, Wu H M, Zhou Z P, Zhang X L. Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. Optics Express, 2010, 18(6): 5942–5950
CrossRef Pubmed Google scholar
[7]
Hao R, Cassan E, Le Roux X, Gao D S, Do Khanh V, Vivien L, Marris-Morini D, Zhang X L. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Optics Express, 2010, 18(16): 16309–16319
CrossRef Pubmed Google scholar
[8]
Petrov A Y, Eich M. Zero dispersion at small group velocities in photonic crystal waveguides. Applied Physics Letters, 2004, 85(21): 4866–4868
CrossRef Google scholar
[9]
O’Faolain L, Schulz S A, Beggs D M, White T P, Spasenović M, Kuipers L, Morichetti F, Melloni A, Mazoyer S, Hugonin J P, Lalanne P, Krauss T F. Loss engineered slow light waveguides. Optics Express, 2010, 18(26): 27627–27638
CrossRef Pubmed Google scholar
[10]
Mazoyer S, Baron A, Hugonin J P, Lalanne P, Melloni A. Slow pulses in disordered photonic-crystal waveguides. Applied Optics, 2011, 50(31): G113–G117
CrossRef Pubmed Google scholar
[11]
Xu Q F, Almeida V R, Panepucci R R, Lipson M. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Optics Letters, 2004, 29(14): 1626–1628
CrossRef Pubmed Google scholar
[12]
Lin C Y, Wang X, Chakravarty S, Lee B S, Lai W, Luo J, Jen A K Y, Chen R T. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Applied Physics Letters, 2010, 97(9): 093304-1–093304-3
[13]
Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
CrossRef Google scholar
[14]
Scullion M G, Di Falco A, Krauss T F. Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosensors & Bioelectronics, 2011, 27(1): 101–105
CrossRef Pubmed Google scholar
[15]
Di Falco A, O’Faolain L, Krauss T F. Photonic crystal slotted slab waveguides. Photonics and Nanostructures-Fundamentals and Applications, 2008, 6(1): 38–41
CrossRef Google scholar
[16]
Caer C, Le Roux X, Do V K, Marris-Morini D, Izard N, Vivien L, Gao D S, Cassan E. Dispersion engineering of wide slot photonic crystal waveguides by bragg-like corrugation of the slot. IEEE Photonics Technology Letters, 2011, 23(18): 1298–1300
CrossRef Google scholar
[17]
Caer C, Le Roux X, Cassan E. Enhanced localization of light in slow wave slot photonic crystal waveguides. Optics Letters, 2012, 37(17): 3660–3662
CrossRef Pubmed Google scholar
[18]
Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 2001, 8(3): 173–190
CrossRef Pubmed Google scholar
[19]
Schulz S A, O’Faolain L, Beggs D M, White T P, Melloni A, Krauss T F. Dispersion engineered slow light in photonic crystals: a comparison. Journal of Optics, 2010, 12(10): 104004-1–104004-3
CrossRef Google scholar
[20]
Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G. A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 2010, 181(3): 687–702
CrossRef Google scholar
[21]
Wang Z C, Zhu N, Tang Y B, Wosinski L, Dai D X, He S L. Ultracompact low-loss coupler between strip and slot waveguides. Optics Letters, 2009, 34(10): 1498–1500
CrossRef Pubmed Google scholar
[22]
Hugonin J P, Lalanne P, White T P, Krauss T F. Coupling into slow-mode photonic crystal waveguides. Optics Letters, 2007, 32(18): 2638–2640
CrossRef Pubmed Google scholar
[23]
Gao J, Gesuele F, Koh W K, Murray C B, Assefa S, Wong C W. Weak exciton-photon coupling of PbS nanocrystals in air-slot mode-gap Si photonic crystal nanocavities in the near-infrared. In: Proceedings of Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS). San Jose, CA, 2010
[24]
Mazoyer S, Hugonin J P, Lalanne P. Disorder-induced multiple scattering in photonic-crystal waveguides. Physical Review Letters, 2009, 103(6): 063903-1–063903-4
CrossRef Pubmed Google scholar
[25]
Kuramochi E, Notomi M, Hughes S, Shinya A, Watanabe T, Ramunno L. Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(16): 161318-1–161318-4
CrossRef Google scholar
[26]
Topolancik J, Vollmer F, Illic B. Random high-Q cavities in disordered photonic crystal waveguides. Applied Physics Letters, 2007, 91(20): 201102-1–201102-3
CrossRef Google scholar

Acknowledgements

The authors acknowledge financial support from the ANR POSIPLOT funding program. Charles Caër acknowledges a scholarship from the French Ministry of Higher Education and Research. The authors acknowledge Prof. Nicolas Dubreuil, Dr. Philippe Lalanne, Dr. Sylvain Combrié and Dr. Alfredo de Rossi for fruitful discussions.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1259 KB)

Accesses

Citations

Detail

Sections
Recommended

/