Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics
Charles CAER, Xavier LE ROUX, Samuel SERNA, Weiwei ZHANG, Laurent VIVIEN, Eric CASSAN
Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics
This paper investigates the slow light propagation in silicon on insulator wide slot photonic crystal waveguides (PCWs). Two design schemes are presented, relying on the dispersion engineering of hole lattice and slot, respectively. Mode patterns and band diagrams are calculated by 3D-plane wave expansion method. Then, coupling and slow light propagations are modeled using finite difference time domain method in a full Mach-Zehnder interferometer (MZI). Results show high amplitudes interference fringes and high coupling efficiencies. Fabrication and measurement of devices lead to slow light propagation with group indices above 50, while multiple scattering and localized modes near the band edge also observed. This study provides insights for losses in hollow core slot high group index waveguides.
silicon photonics / photonic crystals (PC) / slot waveguides / slow waves
[1] |
Baba T. Slow light in photonic crystals. Nature Photonics, 2008, 2(8): 465–473
CrossRef
Google scholar
|
[2] |
Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 2012, 6(4): 248–252
CrossRef
Google scholar
|
[3] |
Monat C, Corcoran B, Pudo D, Ebnali-Heidar M, Grillet C, Pelusi M D, Moss D J, Eggleton B J, White T P, O’Faolain L, Kauss T F. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 344–356
CrossRef
Google scholar
|
[4] |
Frandsen L H, Lavrinenko A V, Fage-Pedersen J, Borel P I. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Optics Express, 2006, 14(20): 9444–9450
CrossRef
Pubmed
Google scholar
|
[5] |
Kubo S, Mori D, Baba T. Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Optics Letters, 2007, 32(20): 2981–2983
CrossRef
Pubmed
Google scholar
|
[6] |
Hao R, Cassan E, Kurt H, Le Roux X, Marris-Morini D, Vivien L, Wu H M, Zhou Z P, Zhang X L. Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. Optics Express, 2010, 18(6): 5942–5950
CrossRef
Pubmed
Google scholar
|
[7] |
Hao R, Cassan E, Le Roux X, Gao D S, Do Khanh V, Vivien L, Marris-Morini D, Zhang X L. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Optics Express, 2010, 18(16): 16309–16319
CrossRef
Pubmed
Google scholar
|
[8] |
Petrov A Y, Eich M. Zero dispersion at small group velocities in photonic crystal waveguides. Applied Physics Letters, 2004, 85(21): 4866–4868
CrossRef
Google scholar
|
[9] |
O’Faolain L, Schulz S A, Beggs D M, White T P, Spasenović M, Kuipers L, Morichetti F, Melloni A, Mazoyer S, Hugonin J P, Lalanne P, Krauss T F. Loss engineered slow light waveguides. Optics Express, 2010, 18(26): 27627–27638
CrossRef
Pubmed
Google scholar
|
[10] |
Mazoyer S, Baron A, Hugonin J P, Lalanne P, Melloni A. Slow pulses in disordered photonic-crystal waveguides. Applied Optics, 2011, 50(31): G113–G117
CrossRef
Pubmed
Google scholar
|
[11] |
Xu Q F, Almeida V R, Panepucci R R, Lipson M. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Optics Letters, 2004, 29(14): 1626–1628
CrossRef
Pubmed
Google scholar
|
[12] |
Lin C Y, Wang X, Chakravarty S, Lee B S, Lai W, Luo J, Jen A K Y, Chen R T. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Applied Physics Letters, 2010, 97(9): 093304-1–093304-3
|
[13] |
Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
CrossRef
Google scholar
|
[14] |
Scullion M G, Di Falco A, Krauss T F. Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosensors & Bioelectronics, 2011, 27(1): 101–105
CrossRef
Pubmed
Google scholar
|
[15] |
Di Falco A, O’Faolain L, Krauss T F. Photonic crystal slotted slab waveguides. Photonics and Nanostructures-Fundamentals and Applications, 2008, 6(1): 38–41
CrossRef
Google scholar
|
[16] |
Caer C, Le Roux X, Do V K, Marris-Morini D, Izard N, Vivien L, Gao D S, Cassan E. Dispersion engineering of wide slot photonic crystal waveguides by bragg-like corrugation of the slot. IEEE Photonics Technology Letters, 2011, 23(18): 1298–1300
CrossRef
Google scholar
|
[17] |
Caer C, Le Roux X, Cassan E. Enhanced localization of light in slow wave slot photonic crystal waveguides. Optics Letters, 2012, 37(17): 3660–3662
CrossRef
Pubmed
Google scholar
|
[18] |
Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 2001, 8(3): 173–190
CrossRef
Pubmed
Google scholar
|
[19] |
Schulz S A, O’Faolain L, Beggs D M, White T P, Melloni A, Krauss T F. Dispersion engineered slow light in photonic crystals: a comparison. Journal of Optics, 2010, 12(10): 104004-1–104004-3
CrossRef
Google scholar
|
[20] |
Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G. A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 2010, 181(3): 687–702
CrossRef
Google scholar
|
[21] |
Wang Z C, Zhu N, Tang Y B, Wosinski L, Dai D X, He S L. Ultracompact low-loss coupler between strip and slot waveguides. Optics Letters, 2009, 34(10): 1498–1500
CrossRef
Pubmed
Google scholar
|
[22] |
Hugonin J P, Lalanne P, White T P, Krauss T F. Coupling into slow-mode photonic crystal waveguides. Optics Letters, 2007, 32(18): 2638–2640
CrossRef
Pubmed
Google scholar
|
[23] |
Gao J, Gesuele F, Koh W K, Murray C B, Assefa S, Wong C W. Weak exciton-photon coupling of PbS nanocrystals in air-slot mode-gap Si photonic crystal nanocavities in the near-infrared. In: Proceedings of Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS). San Jose, CA, 2010
|
[24] |
Mazoyer S, Hugonin J P, Lalanne P. Disorder-induced multiple scattering in photonic-crystal waveguides. Physical Review Letters, 2009, 103(6): 063903-1–063903-4
CrossRef
Pubmed
Google scholar
|
[25] |
Kuramochi E, Notomi M, Hughes S, Shinya A, Watanabe T, Ramunno L. Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(16): 161318-1–161318-4
CrossRef
Google scholar
|
[26] |
Topolancik J, Vollmer F, Illic B. Random high-Q cavities in disordered photonic crystal waveguides. Applied Physics Letters, 2007, 91(20): 201102-1–201102-3
CrossRef
Google scholar
|
/
〈 | 〉 |