Laser diode corner pumped Nd:KGW slab laser

H. AMAN, B. HUSSAIN, A. AMAN

PDF(117 KB)
PDF(117 KB)
Front. Optoelectron. ›› 2014, Vol. 7 ›› Issue (1) : 107-109. DOI: 10.1007/s12200-013-0373-3
RAPID COMMUNICATION
RAPID COMMUNICATION

Laser diode corner pumped Nd:KGW slab laser

Author information +
History +

Abstract

This paper reports the continuous wave (CW) and Q-switched operation of a diode pumped KGd (WO4):Nd (Nd:KGW) slab laser with a corner pumped geometry at the wavelength of 1067 nm. With an optical conversion efficiency of 38% and 34%, average powers of 23 and 20 W in CW and Q-switched modes were achieved respectively. The maximum pulse energy of 27 mJ was observed with a repetition rate of 840 Hz.

Keywords

laser engineering / KGd (WO4):Nd (Nd:KGW) laser / diode-pumped slab laser

Cite this article

Download citation ▾
H. AMAN, B. HUSSAIN, A. AMAN. Laser diode corner pumped Nd:KGW slab laser. Front Optoelec, 2014, 7(1): 107‒109 https://doi.org/10.1007/s12200-013-0373-3

References

[1]
Zhu L, Gao C, Wang R, Gao M, Wang X, Eichler H J. Resonantly pumped 1645 nm Q-switched Er:YAG laser with a ring cavity. Frontiers of Optoelectronics, 2012, 5(4): 400–402
CrossRef Google scholar
[2]
Lin Z, Gao C, Gao M, Zhang Y, Zhu L, Zheng Y. Diode-pumped single-frequency Tm:YAG NPRO laser by using different pumping spot sizes. Frontiers of Optoelectronics, 2009, 2(4): 410–413
CrossRef Google scholar
[3]
Li J, Yang A, Zuo L, Lai J, Sun Y. Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser. Frontiers of Optoelectronics, 2012, 5(2): 208–213
CrossRef Google scholar
[4]
Zhao M, Guo Y, Wang T, Shen X. Short cavity single-frequency all-fiber Er/Yb co-doped laser. Frontiers of Optoelectronics, 2009, 2(1): 81–85
CrossRef Google scholar
[5]
Liu Y, Zhang H, Yan Y, Zhang H, He J, Xin J. A 123 W Nd:YVO4 slab laser with high beam quality output. Frontiers of Optoelectronics, 2009, 2(4): 407–409
CrossRef Google scholar
[6]
Zhang Y, Gao C, Gao M, Zheng Y, Wang L, Wang R. A speed measurement system utilizing an injection-seeded Tm:YAG laser. Frontiers of Optoelectronics, 2011, 4(4): 411–414
CrossRef Google scholar
[7]
Xu J, Dong X, Leng J, Zhou P, Hou J. Efficient, 62.5 watts all-fiber single-mode 1091 nm MOPA laser. Frontiers of Optoelectronics, 2011, 4(4): 426–429
CrossRef Google scholar
[8]
Zhao Y, Liang Y, Zhu X. Applications of scanning femtosecond laser-induced ionization microscopy in biological imaging. Frontiers of Optoelectronics, 2008, 1(3–4): 201–204
[9]
Zhang X, Xie S, Zhan Z, Zhao H, Guo J, Ye Q. Evaluation of Er,Cr:YSGG laser for hard tissue ablation: an in vitro study. Frontiers of Optoelectronics, 2010, 3(2): 163–168
CrossRef Google scholar
[10]
Wang B, Jiang H, Jia X, Zhang Q, Sun D, Yin S. Thermal conductivity of doped YAG and GGG laser crystal. Frontiers of Optoelectronics, 2008, 1(1–2): 138–141
[11]
Karlitschek P, Hillrichs G. Active and passive Q-switching of a diode pumped Nd:KGW-laser. Applied Physics B, 1996, 64(1): 21–24
CrossRef Google scholar
[12]
Liu M, Liu J, Liu S, Li L, Chen F, Wang W. Experimental study on passively Q-switched mode-locking diode-pumped Nd:KGW laser with Cr4+:YAG. Laser Physics, 2009, 19(5): 923–926
CrossRef Google scholar
[13]
Musset O, Boquillon J P. Comparative laser study of Nd:KGW and Nd:YAG near 1.3 µm. Applied Physics B, 1997, 64(4): 503–506
CrossRef Google scholar
[14]
Kushawaha V, Yan Y, Chen Y. Efficiency of diode-pumped 1.35 µm laser from Nd:KGW. Applied Physics B, 1996, 62(5): 533–535
CrossRef Google scholar
[15]
Kushawaha V, Michael A, Major L. Effect of Nd concentration on the Nd:KGW laser. Applied Physics B, 1994, 58(6): 533–535
CrossRef Google scholar
[16]
Demidovich A A, Shkadarevich A P, Danailov M B, Apai P, Gasmi T, Gribkovskii V P, Kuzmin A N, Ryabtsev G I, Batay L E. Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL and Nd:YVO4 under laser diode pumping. Applied Physics B, 1998, 67(1): 11–15
CrossRef Google scholar
[17]
Bai Y, Chen X M, Guo J X, Zhang H L, Bai J T, Ren Z Y. Kilohertz high power extracavity KGW yellow raman lasers based on pulse LD side-pumped ceramic Nd:YAG. Laser Physics, 2012, 22(3): 535–539
CrossRef Google scholar
[18]
Lisinetskii V A, Grabtchikov A S, Demidovich A A, Burakevich V N, Orlovich V A, Titov A N. Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity raman generation. Applied Physics B, 2007, 88(4): 499–501
CrossRef Google scholar
[19]
Lu B D, Cai B W, Feng G Y, Xu S F. Beam quality improvement of slab lasers. In: Proceedings of International Symposium on Optoelectronics in Computers, Communications, and Control. International Society for Optics and Photonics, 1992, 265–273

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(117 KB)

Accesses

Citations

Detail

Sections
Recommended

/