Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics

Xiaofei LU, Xi-Cheng ZHANG

PDF(1403 KB)
PDF(1403 KB)
Front. Optoelectron. ›› 2014, Vol. 7 ›› Issue (2) : 121-155. DOI: 10.1007/s12200-013-0371-5
REVIEW ARTICLE
REVIEW ARTICLE

Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics

Author information +
History +

Abstract

Recently, air plasma, produced by focusing an intense laser beam to ionize atoms or molecules, has been demonstrated to be a promising source of broadband terahertz waves. However, simultaneous broadband and coherent detection of such broadband terahertz waves is still challenging. Electro-optical sampling and photoconductive antennas are the typical approaches for terahertz wave detection. The bandwidth of these detection methods is limited by the phonon resonance or carrier’s lifetime. Unlike solid-state detectors, gaseous sensors have several unique features, such as no phonon resonance, less dispersion, no Fabry-Perot effect, and a continuous renewable nature. The aim of this article is to review the development of a broadband terahertz time-domain spectrometer, which has both a gaseous emitter and sensor mainly based on author’s recent investigation. This spectrometer features high efficiency, perceptive sensitivity, broad bandwidth, adequate signal-to-noise ratio, sufficient dynamic range, and controllable polarization.

The detection of terahertz waves with ambient air has been realized through a third order nonlinear optical process: detecting the second harmonic photon that is produced by mixing one terahertz photon with two fundamental photons. In this review, a systematic investigation of the mechanism of broadband terahertz wave detection was presented first. The dependence of the detection efficiency on probe pulse energy, bias field strength, gas pressure and third order nonlinear susceptibility of gases were experimentally demonstrated with selected gases. Detailed discussions of phase matching and Gouy phase shift were presented by considering the focused condition of Gaussian beams. Furthermore, the bandwidth dependence on probe pulse duration was also demonstrated. Over 240 times enhancement of dynamic range had been accomplished with n-hexane vapor compared to conventional air sensor. Moreover, with sub-20 fs laser pulses delivered from a hollow fiber pulse compressor, an ultra-broad spectrum covering from 0.3 to 70 THz was also showed.

In addition, a balanced detection scheme using a polarization dependent geometry was developed by author to improve signal-to-noise ratio and dynamic range of conventional terahertz air-biased-coherent-detection (ABCD) systems. Utilizing the tensor property of third order nonlinear susceptibility, second harmonic pulses with two orthogonal polarizations was detected by two separated photomultiplier tubes (PMTs). The differential signal from these two PMTs offers a realistic method to reduce correlated laser fluctuation, which circumvents signal-to-noise ratio and dynamic range of conventional terahertz ABCD systems. A factor of two improvement of signal-to-noise ratio was experimentally demonstrated.

This paper also introduces a unique approach to directly produce a broadband elliptically polarized terahertz wave from laser-induced plasma with a pair of double helix electrodes. The theoretical and experimental results demonstrated that velocity mismatch between excitation laser pulses and generated terahertz waves plays a key role in the properties of the elliptically polarized terahertz waves and confirmed that the far-field terahertz emission pattern is associated with a coherent process. The results give insight into the important influence of propagation effects on terahertz wave polarization control and complete the mechanism of terahertz wave generation from laser-induced plasma.

This review provides a critical understanding of broadband terahertz time-domain spectroscopy (THz-TDS) and introduces further guidance for scientific applications of terahertz wave gas photonics.

Keywords

terahertz spectroscopy / terahertz detection /  broadband / gas sensor

Cite this article

Download citation ▾
Xiaofei LU, Xi-Cheng ZHANG. Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics. Front. Optoelectron., 2014, 7(2): 121‒155 https://doi.org/10.1007/s12200-013-0371-5

References

[1]
Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33
CrossRef Pubmed Google scholar
[2]
Siegel P H. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910–928
CrossRef Google scholar
[3]
Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
CrossRef Google scholar
[4]
Nuss M, Orenstein J. Terahertz time-domain spectroscopy. In: Grüner G, ed. Millimeter and Submillimeter Wave Spectroscopy of Solids. Berlin/Heidelberg: Springer, 1998, 7–50
[5]
Grischkowsky D, Keiding S, Exter M, Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America. B, Optical Physics, 1990, 7(10): 2006–2015
CrossRef Google scholar
[6]
Exter M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Optics Letters, 1989, 14(20): 1128–1130
CrossRef Pubmed Google scholar
[7]
Yeh K L, Hoffmann M C, Hebling J, Nelson K A. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters, 2007, 90(17): 171121
CrossRef Google scholar
[8]
You D, Jones R R, Bucksbaum P H, Dykaar D R. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Optics Letters, 1993, 18(4): 290–292
CrossRef Pubmed Google scholar
[9]
Bartel T, Gaal P, Reimann K, Woerner M, Elsaesser T. Generation of single-cycle THz transients with high electric-field amplitudes. Optics Letters, 2005, 30(20): 2805–2807
CrossRef Pubmed Google scholar
[10]
Hirori H, Doi A, Blanchard F, Tanaka K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106
CrossRef Google scholar
[11]
Sell A, Leitenstorfer A, Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letters, 2008, 33(23): 2767–2769
CrossRef Pubmed Google scholar
[12]
Cao J C. Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures. Physical Review Letters, 2003, 91(23): 237401
CrossRef Pubmed Google scholar
[13]
Gaal P, Reimann K, Woerner M, Elsaesser T, Hey R, Ploog K H. Nonlinear terahertz response of -type GaAs. Physical Review Letters, 2006, 96(18): 187402
CrossRef Pubmed Google scholar
[14]
Danielson J R, Lee Y S, Prineas J P, Steiner J T, Kira M, Koch S W. Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells. Physical Review Letters, 2007, 99(23): 237401
CrossRef Pubmed Google scholar
[15]
Shen Y, Watanabe T, Arena D A, Kao C C, Murphy J B, Tsang T Y, Wang X J, Carr G L. Nonlinear cross-phase modulation with intense single-cycle terahertz pulses. Physical Review Letters, 2007, 99(4): 043901
CrossRef Pubmed Google scholar
[16]
Su F H, Blanchard F, Sharma G, Razzari L, Ayesheshim A, Cocker T L, Titova L V, Ozaki T, Kieffer J C, Morandotti R, Reid M, Hegmann F A. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Optics Express, 2009, 17(12): 9620–9629
CrossRef Pubmed Google scholar
[17]
Jewariya M, Nagai M, Tanaka K. Ladder climbing on the anharmonic intermolecular potential in an amino acid microcrystal via an intense monocycle terahertz pulse. Physical Review Letters, 2010, 105(20): 203003
CrossRef Pubmed Google scholar
[18]
Kuehn W, Gaal P, Reimann K, Woerner M, Elsaesser T, Hey R. Coherent ballistic motion of electrons in a periodic potential. Physical Review Letters, 2010, 104(14): 146602
CrossRef Pubmed Google scholar
[19]
Kampfrath T, Sell A, Klatt G, Pashkin A, Mahrlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics, 2011, 5(1): 31–34
CrossRef Google scholar
[20]
Leinß S, Kampfrath T, Volkmann K, Wolf M, Steiner J T, Kira M, Koch S W, Leitenstorfer A, Huber R. Terahertz coherent control of optically dark paraexcitons in Cu2O. Physical Review Letters, 2008, 101(24): 246401
CrossRef Pubmed Google scholar
[21]
Huber R, Tauser F, Brodschelm A, Bichler M, Abstreiter G, Leitenstorfer A. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature, 2001, 414(6861): 286–289
CrossRef Pubmed Google scholar
[22]
Kaindl R A, Carnahan M A, Hägele D, Lövenich R, Chemla D S. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature, 2003, 423(6941): 734–738
CrossRef Pubmed Google scholar
[23]
Günter G, Anappara A A, Hees J, Sell A, Biasiol G, Sorba L, De Liberato S, Ciuti C, Tredicucci A, Leitenstorfer A, Huber R. Sub-cycle switch-on of ultrastrong light-matter interaction. Nature, 2009, 458(7235): 178–181
CrossRef Pubmed Google scholar
[24]
Hu B B, Zhang X C, Auston D H, Smith P R. Free-space radiation from electrooptic crystals. Applied Physics Letters, 1990, 56(6): 506–508
CrossRef Google scholar
[25]
Han P Y, Zhang X C. Free-space coherent broadband terahertz time-domain spectroscopy. Measurement Science & Technology, 2001, 12(11): 1747–1756
CrossRef Google scholar
[26]
Huber R, Brodschelm A, Tauser F, Leitenstorfer A. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Applied Physics Letters, 2000, 76(22): 3191–3193
CrossRef Google scholar
[27]
Kübler C, Huber R, Tubel S, Leitenstorfer A. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared. Applied Physics Letters, 2004, 85(16): 3360–3362
CrossRef Google scholar
[28]
Auston D H. Picosecond optoelectronic switching and gating in silicon. Applied Physics Letters, 1975, 26(3): 101–103 doi:10.1063/1.88079
[29]
Mourou G, Stancampiano C V, Antonetti A, Orszag A. Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch. Applied Physics Letters, 1981, 39(4): 295–296
CrossRef Google scholar
[30]
Fattinger C, Grischkowsky D. Point source terahertz optics. Applied Physics Letters, 1988, 53(16): 1480–1482
CrossRef Google scholar
[31]
Krökel D, Grischkowsky D, Ketchen M B. Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes. Applied Physics Letters, 1989, 54(11): 1046–1047
CrossRef Google scholar
[32]
Shen Y C, Upadhya P C, Linfield E H, Beere H E, Davies A G. Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters. Applied Physics Letters, 2003, 83(15): 3117–3119
CrossRef Google scholar
[33]
Fill E, Borgström S, Larsson J, Starczewski T, Wahlström C G, Svanberg S. XUV spectra of optical-field-ionized plasmas. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(6): 6016–6027
CrossRef Pubmed Google scholar
[34]
Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728
CrossRef Pubmed Google scholar
[35]
Forestier B, Houard A, Durand M, Andre Y B, Prade B, Dauvignac J Y, Perret F, Pichot C, Pellet M, Mysyrowicz A. Radiofrequency conical emission from femtosecond filaments in air. Applied Physics Letters, 2010, 96(14): 141111
CrossRef Google scholar
[36]
Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
CrossRef Pubmed Google scholar
[37]
Thomson M D, Blank V, Roskos H G. Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Optics Express, 2010, 18(22): 23173–23182
CrossRef Pubmed Google scholar
[38]
Wu Q, Zhang X C. Free-space electro-optics sampling of mid-infrared pulses. Applied Physics Letters, 1997, 71(10): 1285–1286
CrossRef Google scholar
[39]
Jepsen P U, Winnewisser C, Schall M, Schyja V, Keiding S R, Helm H. Detection of THz pulses by phase retardation in lithium tantalate. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53(4): R3052–R3054
CrossRef Pubmed Google scholar
[40]
Nahata A, Auston D H, Heinz T F, Wu C. Coherent detection of freely propagating terahertz radiation by electro-optic sampling. Applied Physics Letters, 1996, 68(2): 150–152
CrossRef Google scholar
[41]
Vagelatos N, Wehe D, King J S. Phonon dispersion and phonon densities of states for ZnS and ZnTe. Journal of Chemical Physics, 1974, 60(9): 3613–3618
CrossRef Google scholar
[42]
Kleinman D A, Spitzer W G. Infrared lattice absorption of GaP. Physical Review, 1960, 118(1): 110–117
CrossRef Google scholar
[43]
Gupta S, Frankel M Y, Valdmanis J A, Whitaker J F, Mourou G A, Smith F W, Calawa A R. Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures. Applied Physics Letters, 1991, 59(25): 3276–3278
CrossRef Google scholar
[44]
Prabhu S S, Ralph S E, Melloch M R, Harmon E S. Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy. Applied Physics Letters, 1997, 70(18): 2419–2421
CrossRef Google scholar
[45]
Kono S, Tani M, Sakai K. Coherent detection of mid-infrared radiation up to 60 THz with an LT-GaAs photoconductive antenna. Iee P-Optoelectron, 2002, 149(3): 105–109
CrossRef Google scholar
[46]
Liu J, Zhang X C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103(23): 235002
CrossRef Pubmed Google scholar
[47]
Liu J, Zhang X C. Plasma characterization using terahertz-wave-enhanced fluorescence. Applied Physics Letters, 2010, 96(4): 041505
CrossRef Google scholar
[48]
Liu J, Dai J, Chin S L, Zhang X C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631
CrossRef Google scholar
[49]
Clough B, Liu J, Zhang X C. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters, 2010, 35(21): 3544–3546
CrossRef Pubmed Google scholar
[50]
Liu J, Clough B, Zhang X C. Enhancement of photoacoustic emission through terahertz-field-driven electron motions. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(6 Pt 2): 066602
CrossRef Pubmed Google scholar
[51]
Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903
CrossRef Pubmed Google scholar
[52]
Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131
CrossRef Google scholar
[53]
Nahata A, Heinz T F. Detection of freely propagating terahertz radiation by use of optical second-harmonic generation. Optics Letters, 1998, 23(1): 67–69
CrossRef Pubmed Google scholar
[54]
Cook D J, Chen J X, Morlino E A, Hochstrasser R M. Terahertz-field-induced second-harmonic generation measurements of liquid dynamics. Chemical Physics Letters, 1999, 309(3–4): 221–228
CrossRef Google scholar
[55]
Lu X, Karpowicz N, Zhang X C. Broadband terahertz detection with selected gases. Journal of the Optical Society of America. B, Optical Physics, 2009, 26(9): A66–A73
CrossRef Google scholar
[56]
Lu X, Zhang X C.Terahertz wave gas photonics: sensing with gases. Journal of Infrared, Millimeter and Terahertz Waves, 2011, 32(5): 562–569
[57]
Lu X, Karpowicz N, Chen Y, Zhang X C. Systematic study of broadband terahertz gas sensor. Applied Physics Letters, 2008, 93(26): 261106
CrossRef Google scholar
[58]
Kleinman D A, Ashkin A, Boyd G D. Second-harmonic generation of light by focused laser beams. Physical Review, 1966, 145(1): 338
[59]
Ward J F, New G H C. Optical third harmonic generation in gases by a focused laser beam. Physical Review, 1969, 185(1): 57
[60]
Karpowics N. Physics and utilization of terahertz gas photonics. In: Physics. Rensselaer Polytechnic Institute, Troy, NY, 2009, 124
[61]
Finn R S, Ward J F. DC-induced optical second-harmonic generation in the inert gases. Physical Review Letters, 1971, 26: 285–289
[62]
Becker A, Akozbek N, Vijayalakshmi K, Oral E, Bowden C M, Chin S L. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Applied Physics. B, Lasers and Optics, 2001, 73(3): 287–290
CrossRef Google scholar
[63]
Shelton D P. Nonlinear-optical susceptibilities of gases measured at 1064 and 1319 nm. Physical Review A, 1990, 42(5): 2578–2592PMID:9904326
CrossRef Google scholar
[64]
Boyd R W. Nonlinear Optics. Burlington, MA: Academic Press, 2008
[65]
Hermann J P, Ducuing J. Third-order polarizabilities of long-chain molecules. Journal of Applied Physics, 1974, 45(11): 5100–5102
CrossRef Google scholar
[66]
Rustagi K C, Ducuing J. Third-order optical polarizability of conjugated organic-molecules. Optics Communications, 1974, 10(3): 258–261
CrossRef Google scholar
[67]
Korff S, Breit G. Optical dispersion. Reviews of Modern Physics, 1932, 4(3): 471–503
CrossRef Google scholar
[68]
Gouy L G. Sur la propagation anomale des ondes. Compt. Rendue Acad. Sci. Paris, 1890, 111: 33
[69]
Gouy L G. Sur une propriete nouvelle des ondes lumineuses. C. R. Acad. Sci. Paris, 1890, 110: 1251
[70]
Ruffin A B, Rudd J V, Whitaker J F, Feng S, Winful H G. Direct observation of the Gouy phase shift with single-cycle terahertz pulses. Physical Review Letters, 1999, 83(17): 3410–3413
CrossRef Google scholar
[71]
Lide D R, ed. CRC Handbook of Chemistry and Physics. 86th ed. Boca Raton: CRC-Press, 2005
[72]
Wu Q, Zhang X C. Free-space electro-optics sampling of mid-infrared pulses. Applied Physics Letters, 1997, 71(10): 1285–1286
CrossRef Google scholar
[73]
Naftaly M, Dudley R. Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. Optics Letters, 2009, 34(8): 1213–1215
CrossRef Pubmed Google scholar
[74]
Bigio I J, Ward J F. Measurement of the hyperpolarizability ratio χyyyy(-2ω; 0, ω, ω)/χyyxx(-2ω; 0, ω, ω) for the inert gases. Physical Review A, 1974, 9(1): 35–39
CrossRef Google scholar
[75]
Ward J F, Bigio I J. Molecular second- and third-order polarizabilities from measurements of second-harmonic generation in gases. Physical Review A, 1975, 11(1): 60–66
CrossRef Google scholar
[76]
Ward J F, Miller C K. Measurements of nonlinear optical polarizabilities for twelve small molecules. Physical Review A, 1979, 19(2): 826–833
CrossRef Google scholar
[77]
Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005
CrossRef Pubmed Google scholar
[78]
Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
CrossRef Pubmed Google scholar
[79]
Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics, 2008, 2(10): 605–609
CrossRef Google scholar
[80]
Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001
CrossRef Pubmed Google scholar
[81]
Silaev A A, Vvedenskii N V. Residual-current excitation in plasmas produced by few-cycle laser pulses. Physical Review Letters, 2009, 102(11): 115005
CrossRef Pubmed Google scholar
[82]
Kreß M, Löffler T, Thomson M D, Dörner R, Gimpel H, Zrost K, Ergler T, Moshammer R, Morgner U, Ullrich J, Roskos H G. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature Physics, 2006, 2(5): 327–331
CrossRef Google scholar
[83]
Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 2000, 288(5466): 635–639
CrossRef Pubmed Google scholar
[84]
Paulus G G, Grasbon F, Walther H, Villoresi P, Nisoli M, Stagira S, Priori E, De Silvestri S. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature, 2001, 414(6860): 182–184
CrossRef Pubmed Google scholar
[85]
Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photonics, 2010, 4(12): 875–879
CrossRef Google scholar
[86]
Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P. Observation of a train of attosecond pulses from high harmonic generation. Science, 2001, 292(5522): 1689–1692
CrossRef Pubmed Google scholar
[87]
Strickland D, Mourou G. Compression of amplified chirped optical pulses. Optics Communications, 1985, 56(3): 219–221
CrossRef Google scholar
[88]
Nisoli M, De Silvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique. Applied Physics Letters, 1996, 68(20): 2793–2795
CrossRef Google scholar
[89]
Nisoli M, De Silvestri S, Svelto O, Szipöcs R, Ferencz K, Spielmann C, Sartania S, Krausz F. Compression of high-energy laser pulses below 5 fs. Optics Letters, 1997, 22(8): 522–524
CrossRef Pubmed Google scholar
[90]
Matsubara E, Yamane K, Sekikawa T, Yamashita M. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber. Journal of the Optical Society of America. B, Optical Physics, 2007, 24(4): 985–989
CrossRef Google scholar
[91]
Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Biegert J, Keller U. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Applied Physics. B, Lasers and Optics, 2004, 79(6): 673–677
CrossRef Google scholar
[92]
Couairon A, Franco M, Mysyrowicz A, Biegert J, Keller U. Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient. Optics Letters, 2005, 30(19): 2657–2659
CrossRef Pubmed Google scholar
[93]
Kane D J, Trebino R. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating. Optics Letters, 1993, 18(10): 823–825
CrossRef Pubmed Google scholar
[94]
Johnson F A. Lattice absorption bands in silicon. Proceedings of the Physical Society, London, 1959, 73(2): 265–272
CrossRef Google scholar
[95]
Shan J, Dadap J I, Heinz T F. Circularly polarized light in the single-cycle limit: The nature of highly polychromatic radiation of defined polarization. Optics Express, 2009, 17(9): 7431–7439
CrossRef Pubmed Google scholar
[96]
Löffler T, Jacob F, Roskos H G. Generation of terahertz pulses by photoionization of electrically biased air. Applied Physics Letters, 2000, 77(3): 453–455
CrossRef Google scholar
[97]
Roskos H G, Thomson M D, Kreß M, Löffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser Photonics Rev, 2007, 1(4): 349–368
CrossRef Google scholar
[98]
Houard A, Liu Y, Prade B, Tikhonchuk V T, Mysyrowicz A. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Physical Review Letters, 2008, 100(25): 255006
CrossRef Pubmed Google scholar
[99]
Blanchard F, Sharma G, Ropagnol X, Razzari L, Morandotti R, Ozaki T. Improved terahertz two-color plasma sources pumped by high intensity laser beam. Optics Express, 2009, 17(8): 6044–6052
CrossRef Pubmed Google scholar
[100]
Babushkin I, Kuehn W, Köhler C, Skupin S, Bergé L, Reimann K, Woerner M, Herrmann J, Elsaesser T. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Physical Review Letters, 2010, 105(5): 053903
CrossRef Pubmed Google scholar
[101]
Liu Y, Houard A, Prade B, Mysyrowicz A, Diaw A, Tikhonchuk V T. Amplification of transition-Cherenkov terahertz radiation of femtosecond filament in air. Applied Physics Letters, 2008, 93(5): 051108
CrossRef Google scholar
[102]
Chen Y P, Wang T J, Marceau C, Théberge F, Châteauneuf M, Dubois J, Kosareva O, Chin S L. Characterization of terahertz emission from a dc-biased filament in air. Applied Physics Letters, 2009, 95: 101101
CrossRef Google scholar
[103]
Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001
CrossRef Pubmed Google scholar
[104]
Wen H D, Lindenberg A M. Coherent terahertz polarization control through manipulation of electron trajectories. Physical Review Letters, 2009, 103(2): 023902
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1403 KB)

Accesses

Citations

Detail

Sections
Recommended

/