Review on one-dimensional ZnO nanostructures for electron field emitters
Meirong SUI, Ping GONG, Xiuquan GU
Review on one-dimensional ZnO nanostructures for electron field emitters
The emission of electrons from the surface of a solid caused by a high electric field is called field emission (FE). Electron sources based on FE are used today in a wide range of applications, such as microwave traveling wave tubes, e-beam evaporators, mass spectrometers, flat panel of field emission displays (FEDs), and highly efficient lamps. Since the discovery of carbon nanotubes (CNTs) in 1991, much attention has been paid to explore the usage of these ideal one-dimensional (1D) nanomaterials as field emitters achieving high FE current density at a low electric field because of their high aspect ratio and “whisker-like” shape for optimum geometrical field enhancement. 1D metal oxide semiconductors, such as ZnO and WO3 possess high melting point and chemical stability, thereby allowing a higher oxygen partial pressure and poorer vacuum in FE applications. In addition, unlike CNTs, in which both semiconductor and metallic CNTs can co-exist in the as-synthesized products, it is possible to prepare 1D semiconductor nanostructures with a unique electronic property. Moreover, 1D semiconductor nanostructures generally have the advantage of a lower surface potential barrier than that of CNTs due to lower electron affinity and the conductivity could be enhanced by doping with certain elements. As a consequence, there has been increasing interest in the investigation of 1D metal oxide nanostructure as an appropriate alternative FE electron source to CNT for FE devices in the past few years. This paper provides a comprehensive review of the state-of-the-art research activities in the field. It mainly focuses on FE properties and applications of the most widely studied 1D ZnO nanostructures, such as nanowires (NWs), nanobelts, nanoneedles and nanotubes (NTs). We begin with the growth mechanism, and then systematically discuss the recent progresses on several kinds of important nano-structures and their FE characteristics and applications in details. Finally, it is concluded with the outlook and future research tendency in the area.
field emission (FE) / nanostructure / metal oxide
[1] |
Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J, Kim B J, Park Y S, Youn C J. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters, 2006, 88(24): 241108-1–241108-3
CrossRef
Google scholar
|
[2] |
Könenkamp R, Word R C, Godinez M. Ultraviolet electroluminescence from ZnO/polymer heterojunction light- emitting diodes . Nano Letters, 2005, 5(10): 2005–2008
Pubmed
|
[3] |
Lim J H, Kang C K, Kim K K, Park I K, Hwang D K, Park S J. UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Advanced Materials, 2006, 18(20): 2720–2724
CrossRef
Google scholar
|
[4] |
Zhu H, Shan C X, Li B H, Zhang J Y, Yao B, Zhang Z Z, Zhao D X, Shen D Z, Fan X W. Ultraviolet electroluminescence from MgZnO-based heterojunction light-emitting diodes. Journal of Physical Chemistry C, 2009, 113(7): 2980–2982
CrossRef
Google scholar
|
[5] |
Ryu Y R, Lubguban J A, Lee T S, White H W, Jeong T S, Youn C J, Kim B J. Excitonic ultraviolet lasing in ZnO-based light emitting devices. Applied Physics Letters, 2007, 90(13): 131115-1–131115-3
CrossRef
Google scholar
|
[6] |
Zhu H, Shan C X, Yao B, Li B H, Zhang J Y, Zhang Z Z, Zhao D X, Shen D Z, Fan X W, Lu Y M, Tang Z K. Ultralow-threshold laser realized in zinc oxide. Advanced Materials, 2009, 21(16): 1613–1617
|
[7] |
Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied Physics Letters, 1998, 72(25): 3270–3272
CrossRef
Google scholar
|
[8] |
Chu S, Olmedo M, Yang Z, Kong J, Liu J L. Electrically pumped ultraviolet ZnO diode lasers on Si. Applied Physics Letters, 2008, 93(18): 181106-1–181106-3
CrossRef
Google scholar
|
[9] |
Liu K W, Shen D Z, Shan C X, Zhang J Y, Yao B, Zhao D X, Lu Y M, Fan X W. Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection. Applied Physics Letters, 2007, 91(20): 201106-1–201106-3
CrossRef
Google scholar
|
[10] |
Liao L, Lu H B, Shuai M, Li J C, Liu Y L, Liu C, Shen Z X, Yu T. A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability. Nanotechnology, 2008, 19(17): 175501–175505
CrossRef
Pubmed
Google scholar
|
[11] |
Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Letters, 2004, 4(10): 1919–1924
CrossRef
Google scholar
|
[12] |
Huang H, Tan O K, Lee Y C, Tran T D, Tse M S, Yao X. Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment. Applied Physics Letters, 2005, 87(16): 163123-1–163123-3
CrossRef
Google scholar
|
[13] |
Park J Y, Song D E, Kim S S. An approach to fabricating chemical sensors based on ZnO nanorod arrays. Nanotechnology, 2008, 19(10): 105503–105507
CrossRef
Pubmed
Google scholar
|
[14] |
Chang S J, Hsueh T J, Chen I C, Huang B R. Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology, 2008, 19(17): 175502–175506
CrossRef
Pubmed
Google scholar
|
[15] |
Niu S, Hu β Y, Wen β X, Zhou Y, Zhang β F, Lin β L, Wang β S, Wang β Z L, Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by piezotronic effect. Advanced Materials, 2013, 25(27): 3701–3706
CrossRef
Google scholar
|
[16] |
Law J B K, Thong J T L. Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration. Nanotechnology, 2008, 19(20): 205502–205506
CrossRef
Pubmed
Google scholar
|
[17] |
Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature, 2005, 4(6): 455–459
CrossRef
Google scholar
|
[18] |
Seow Z L S, Wong A S W, Thavasi V, Jose R, Ramakrishna S, Ho G W. Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells. Nanotechnology, 2009, 20(4): 045604–045609
CrossRef
Pubmed
Google scholar
|
[19] |
Jiang C Y, Sun X W, Tan K W, Lo G Q, Kyaw A K K, Kwong D L. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Applied Physics Letters, 2008, 92(14): 143101-1–143101-3
CrossRef
Google scholar
|
[20] |
Hsu Y F, Xi Y Y, Djurišić A B, Chan W K. ZnO nanorods for solar cells: hydrothermal growth versus vapor deposition. Applied Physics Letters, 2008, 92(13): 133507-1–133507-3
CrossRef
Google scholar
|
[21] |
Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials, 2005, 4(1): 42–46
CrossRef
Google scholar
|
[22] |
Xu W Z, Ye Z Z, Zeng Y J, Zhu L P, Zhao B H, Jiang L, Lu J G, He H P, Zhang S B. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters, 2006, 88(17): 173506-1–173506-3
CrossRef
Google scholar
|
[23] |
Bian J M, Liu W F, Liang H W, Hu L Z, Sun J C, Luo Y M, Du G T. Room temperature electroluminescence from the n-ZnMgO/ZnO/p-ZnMgO heterojunction device grown by ultrasonic spray pyrolysis. Chemical Physics Letters, 2006, 430(1–3): 183–187
CrossRef
Google scholar
|
[24] |
Zhang J Y, Li P J, Sun H, Shen X, Deng T S, Zhu K T, Zhang Q F, Wu J L. Ultraviolet electroluminescence from controlled arsenic-doped ZnO nanowire homojunctions. Applied Physics Letters, 2008, 93(2): 021116-1–021116-3
CrossRef
Google scholar
|
[25] |
Hsu Y F, Xi Y Y, Tam K H, Djurišić A B, Luo J M, Ling C C, Cheung C K, Ng A M C, Chan W K, Deng X, Beling C D, Fung S, Cheah K W, Fong P W K, Surya C C. Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Advanced Functional Materials, 2008, 18(7): 1020–1030
|
[26] |
Goldberger J, He R, Zhang Y F, Lee S K, Yan H Q, Choi H J, Yang P D. Single-crystal gallium nitride nanotubes. Nature, 2003, 422(6932): 599–602
CrossRef
Pubmed
Google scholar
|
[27] |
Wang X D, Gao P X, Li J, Summers C J, Wang Z L. Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes. Advanced Materials, 2002, 14(23): 1732–1735
|
[28] |
Shoulders K R. Microelectronics using electron-beam-activated machining techniques. Advances in Computers, 1961, 2: 135–293
CrossRef
Google scholar
|
[29] |
Spindt C A. A thin-film field-emission cathode. Journal of Applied Physics, 1968, 39(7): 3504–3505
CrossRef
Google scholar
|
[30] |
Spindt C A, Brodie I, Humphrey L, Westerberg E R. Physical properties of thin-film field emission cathodes with molybdenum cones. Journal of Applied Physics, 1976, 47(12): 5248–5263
CrossRef
Google scholar
|
[31] |
Spindt C A, Shoulders K R, Heynick L N. US Patents, <patent>3755704, 1973</patent>
|
[32] |
Xu N S, Huq S E. Novel cold cathode materials and applications. Materials Science and Engineering: R: Reports, 2005, 48(2–5): 47–189
CrossRef
Google scholar
|
[33] |
Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58
CrossRef
Google scholar
|
[34] |
Xu N S, Deng S Z, Chen J. Nanomaterials for field electron emission: preparation, characterization and application. Ultramicroscopy, 2003, 95(1–4): 19–28
CrossRef
Pubmed
Google scholar
|
[35] |
Fan S S, Chapline M G, Franklin N R, Tombler T W, Cassell A M, Dai H J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283(5401): 512–514
CrossRef
Pubmed
Google scholar
|
[36] |
Heer W A D, Châtelain A, Ugarte D. A carbon nanotube field-emission electron source .Science, 1995, 270(5239): 1179–1180
CrossRef
Google scholar
|
[37] |
Rinzler A G, Hafner J H, Nikolaev P, Nordlander P, Colbert D T, Smalley R E, Lou L, Kim S G, Tománek D. Unraveling nanotubes: field emission from an atomic wire. Science, 1995, 269(5230): 1550–1553
CrossRef
Pubmed
Google scholar
|
[38] |
Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources. Carbon, 2000, 38(2): 169–182
CrossRef
Google scholar
|
[39] |
Saito Y, Uemura S, Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters. Japanese Journal of Applied Physics, 1998, 37(Part 2, No. 3B): L346–L348
CrossRef
Google scholar
|
[40] |
Pradhan D, Kumar M, Ando Y, Leung K T. One-dimensional and two-dimensional ZnO nanostructured materials on a plastic substrate and their field emission properties. Journal of Physical Chemistry C, 2008, 112(18): 7093–7096
CrossRef
Google scholar
|
[41] |
Greene L E, Law M, Goldberger J, Kim F, Johnson J C, Zhang Y F, Saykally R J, Yang P D. Low-temperature wafer-scale production of ZnO nanowire arrays. Angewandte Chemie International Edition, 2003, 42(26): 3031–3034
CrossRef
Google scholar
|
[42] |
Kumar R T R, McGlynn E, Biswas M, Saunders R, Trolliard G, Soulestin B, Duclere J R, Mosnier J P, Henry M O. Growth of ZnO nanostructures on Au-coated Si: influence of growth temperature on growth mechanism and morphology. Journal of Applied Physics, 2008, 104(8): 084309–084319
CrossRef
Google scholar
|
[43] |
Kim D S, Scholz R, Gösele U, Zacharias M. Gold at the root or at the tip of ZnO nanowires: a model. Small, 2008, 4(10): 1615–1619
CrossRef
Pubmed
Google scholar
|
[44] |
Chiu S P, Lin Y H, Lin J J. Electrical conduction mechanisms in natively doped ZnO nanowires. Nanotechnology, 2009, 20(1): 015203–015210
CrossRef
Pubmed
Google scholar
|
[45] |
Hochbaum A I, Fan R, He R G, Yang P D. Controlled growth of Si nanowire arrays for device integration. Nano Letters, 2005, 5(3): 457–460
CrossRef
Pubmed
Google scholar
|
[46] |
Zhou H J, Fallert J, Sartor J, Dietz R J B, Klingshirn C, Kalt H, Weissenberger D, Gerthsen D, Zeng H B, Cai W P. Ordered n-type ZnO nanorod arrays. Applied Physics Letters, 2008, 92(13): 132112-1–132112-3
CrossRef
Google scholar
|
[47] |
Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949
CrossRef
Pubmed
Google scholar
|
[48] |
Gao P X, Wang Z L. Self-assembled nanowire–nanoribbon junction arrays of ZnO. Journal of Physical Chemistry B, 2002, 106(49): 12653–12658
CrossRef
Google scholar
|
[49] |
Li S Y, Lin P, Lee C Y, Tseng T Y. Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. Journal of Applied Physics, 2004, 95(7): 3711–3716
CrossRef
Google scholar
|
[50] |
Levin I, Davydov A, Nikoobakht B, Sanford N, Mogilevsky P. Growth habits and defects in ZnO nanowires grown on GaN/sapphire substrates. Applied Physics Letters, 2005, 87(10): 103110-1–103110-3
CrossRef
Google scholar
|
[51] |
Kim D S, Ji R, Fan H J, Bertram F, Scholz R, Dadgar A, Nielsch K, Krost A, Christen J, Gösele U, Zacharias M. Laser-interference lithography tailored for highly symmetrically arranged ZnO nanowire arrays. Small, 2007, 3(1): 76–80
CrossRef
Pubmed
Google scholar
|
[52] |
Gao P X, Ding Y, Wang Z L. Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. Nano Letters, 2003, 3(9): 1315–1320
CrossRef
Google scholar
|
[53] |
Wang X D, Song J H, Summers C J, Ryou J H, Li P, Dupuis R D, Wang Z L. Density-controlled growth of aligned ZnO nanowires sharing a common contact: a simple, low-cost, and mask-free technique for large-scale applications. Journal of Physical Chemistry B, 2006, 110(15): 7720–7724
CrossRef
Google scholar
|
[54] |
Wang X D, Zhou J, Lao C S, Song J H, Xu N S, Wang Z L. In situ field emission of density-controlled ZnO nanowire arrays. Advanced Materials, 2007, 19(12): 1627–1631
CrossRef
Google scholar
|
[55] |
Shen G Z, Bando Y, Liu B D, Golberg D, Lee C J. Characterization and field-emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal-evaporation process. Advanced Functional Materials, 2006, 16(3): 410–416
CrossRef
Google scholar
|
[56] |
Fang F, Zhao D X, Shen D Z, Zhang J Y, Li B H. Synthesis of ordered ultrathin ZnO nanowire bundles on an indium-tin oxide substrate. Inorganic Chemistry, 2008, 47(2): 398–400
CrossRef
Pubmed
Google scholar
|
[57] |
Liao X, Zhang X, Li S. The effect of residual stresses in the ZnOβbuffer layer on the density of a ZnOβnanowire array. Nanotechnology, 2008, 19(22): 225313-1–225313-7
|
[58] |
Hong J I, Bae, Wang Z L, Snyder R L. Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnOβnanowire arrays. Nanotechnology, 2009, 20(8): 085609-1–085609-5
Pubmed
|
[59] |
Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S, Chen I C. Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Advanced Functional Materials, 2003, 13(10): 811–814
CrossRef
Google scholar
|
[60] |
Zhu Y W, Zhang H Z, Sun X C, Feng S Q, Xu J, Zhao Q, Xiang B, Wang R M, Yu D P. Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters, 2003, 83(1): 144–146
CrossRef
Google scholar
|
[61] |
Zhang Z X, Yuan H J, Zhou J J, Liu D F, Luo S D, Miao Y M, Gao Y, Wang J X, Liu L F, Song L, Xiang Y J, Zhao X W, Zhou W Y, Xie S S. Growth mechanism, photoluminescence, and field-emission properties of ZnO nanoneedle arrays. Journal of Physical Chemistry B, 2006, 110(17): 8566–8569
CrossRef
Google scholar
|
[62] |
Xu C X, Sun X W. Field emission from zinc oxide nanopins. Applied Physics Letters, 2003, 83(18): 3806–3808
CrossRef
Google scholar
|
[63] |
Liao L, Li J C, Liu D H, Liu C, Wang D F, Song W Z, Fu Q. Self-assembly of aligned ZnO nanoscrews: growth, configuration, and field emission. Applied Physics Letters, 2005, 86(8): 083106-1–083106-3
CrossRef
Google scholar
|
[64] |
Wang R C, Liu C P, Huang J L, Chen S J. Growth and field-emission properties of single-crystalline conic ZnO nanotubes. Nanotechnology, 2006, 17(3): 753–757
CrossRef
Google scholar
|
[65] |
Xu W Z, Ye Z Z, Ma D W, Lu H M, Zhu L P, Zhao B H, Yang X D, Xu Z Y. Quasi-aligned ZnO nanotubes grown on Si substrates. Applied Physics Letters, 2005, 87(9): 093110-1–093110-3
CrossRef
Google scholar
|
[66] |
Wang W Z, Zeng B Q, Yang J, Poudel B, Huang J Y, Naughton M J, Ren Z F. Aligned ultralong ZnO nanobelts and their enhanced field emission. Advanced Materials, 2006, 18(24): 3275–3278
CrossRef
Google scholar
|
[67] |
He H P, Tang H P, Ye Z Z, Zhu L P, Zhao B H, Wang L, Li X H. Temperature-dependent photoluminescence of quasialigned Al-doped ZnO nanorods. Applied Physics Letters, 2007, 90(2): 023104-1–023104-3
CrossRef
Google scholar
|
[68] |
Lin S S, He H P, Ye Z Z, Zhao B H, Huang J Y. Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods. Journal of Applied Physics, 2008, 104(11): 114307-1–114307-7
CrossRef
Google scholar
|
[69] |
He H P, Ye Z Z, Lin S S, Tang H P, Zhang Y Z, Zhu L P, Huang J Y, Zhao B H. Determination of the free exciton energy in ZnO nanorods from photoluminescence excitation spectroscopy. Journal of Applied Physics, 2007, 102(1): 013511-1–013511-4
CrossRef
Google scholar
|
[70] |
Lin S S, Tang H P, Ye Z Z, He H P, Zeng Y J, Zhao B H, Zhu L P. Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration. Materials Letters, 2008, 62(4): 603–606
CrossRef
Google scholar
|
[71] |
Zhu L P, Li J S, Ye Z Z, He H P, Chen X J, Zhao B H. Photoluminescence of Ga-doped ZnO nanorods prepared by chemical vapor deposition. Optical Materials, 2008, 31(2): 237–240
CrossRef
Google scholar
|
[72] |
Ahn C H, Han W S, Kong B H, Cho H K. Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior. Nanotechnology, 2009, 20(1): 015601-1–015601-7
CrossRef
Pubmed
Google scholar
|
[73] |
Yuan G D, Zhang W J, Jie J S, Fan X, Tang J X, Shafiq I, Ye Z Z, Lee C S, Lee S T. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Advanced Materials, 2008, 20(1): 168–173
CrossRef
Google scholar
|
[74] |
Xiang B, Wang P W, Zhang X Z, Dayeh S A, Aplin D P R, Soci C, Yu D P, Wang D L. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Letters, 2007, 7(2): 323–328
CrossRef
Pubmed
Google scholar
|
[75] |
Yuan G D, Zhang W J, Jie J S, Fan X, Zapien J A, Leung Y H, Luo L B, Wang P F, Lee C S, Lee S T. p-type ZnO nanowire arrays. Nano Letters, 2008, 8(8): 2591–2597
CrossRef
Pubmed
Google scholar
|
[76] |
Lu J G, Zhang Y Z, Ye Z Z, Zeng Y J, Huang J Y, Wang L. Rational synthesis and tunable optical properties of quasialigned Zn1-xMgxO nanorods. Applied Physics Letters, 2007, 91(19): 193108-1–193108-3
CrossRef
Google scholar
|
[77] |
Zhi M, Zhu L, Ye Z, Wang F, Zhao B, Preparation and properties of ternary ZnMgO nanowires. The Journal of Physical Chemistry B, 2005, 109 (50): 23930–23934
CrossRef
Google scholar
|
[78] |
Wang F Z, Ye Z Z, Ma D W, Zhu L P, Zhuge F, He H P. Synthesis and characterization of quasi-aligned ZnCdO nanorods. Applied Physics Letters, 2005, 87(14): 143101-1–143101-3
CrossRef
Google scholar
|
[79] |
Liao L, Lu H B, Zhang L, Shuai M, Li J C, Liu C, Fu D J, Ren F. Effect of ferromagnetic properties in Al-doped Zn1–xCoxO nanowires synthesized by water-assistance reactive vapor deposition. Journal of Applied Physics, 2007, 102(11): 114307-1–114307-5
CrossRef
Google scholar
|
[80] |
Zhang X M, Zhang Y, Wang Z L, Mai W J, Gu Y D, Chu W S, Wu Z Y. Synthesis and characterization of Zn1-xMnxO nanowires. Applied Physics Letters, 2008, 92(16): 162102-1–162102-3
CrossRef
Google scholar
|
[81] |
Zhang X M, Mai W, Zhang Y, Ding Y, Wang Z L. Co-doped Y-shape ZnO nanostructures: synthesis, structure and properties. Solid State Communications, 2009, 149(7–8): 293–296
CrossRef
Google scholar
|
[82] |
He J H, Lao C S, Chen L J, Davidovic D, Wang Z L. Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. Journal of the American Chemical Society, 2005, 127(47): 16376–16377
CrossRef
Pubmed
Google scholar
|
[83] |
Xing G Z, Yi J B, Tao J G, Liu T, Wong L M, Zhang Z, Li G P, Wang S J, Ding J, Sum T C, Huan C H A, Wu T. Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Advanced Materials, 2008, 20(18): 3521–3527
CrossRef
Google scholar
|
[84] |
Zha M Z, Calestani D, Zappettini A, Mosca R, Mazzera M, Lazzarini L, Zanotti L. Large-area self-catalyzed and selective growth of ZnO nanowires. Nanotechnology, 2008, 19(32): 325603-1–325603-6
CrossRef
Pubmed
Google scholar
|
[85] |
Huo K F, Hu Y M, Fu J J, Wang X B, Chu P K, Hu Z, Chen Y. Direct and large-area growth of one-dimensional ZnO nanostructures from and on a brass substrate. Journal of Physical Chemistry C, 2007, 111(16): 5876–5881
CrossRef
Google scholar
|
[86] |
Gu X G, Huo K F, Qian G X, Fu J J, Chu P K. Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate. Applied Physics Letters, 2008, 93(20): 203117-1–203117-3
CrossRef
Google scholar
|
[87] |
Morber J R, Ding Y, Haluska M S, Li Y, Liu J P, Wang Z L, Snyder R L. PLD-Assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties. Journal of Physical Chemistry B, 2006, 110(43): 21672–21679
CrossRef
Google scholar
|
[88] |
Lin S S, Hong J I, Song J H, Zhu Y, He H P, Xu Z, Wei Y G, Ding Y, Snyder R L, Wang Z L. Phosphorus doped Zn1-xMgxO nanowire arrays. Nano Letters, 2009, 9(11): 3877–3882
CrossRef
Pubmed
Google scholar
|
[89] |
Vayssieres L, Keis K, Lindquist S E, Hagfeldt A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. Journal of Physical Chemistry B, 2001, 105(17): 3350–3352
CrossRef
Google scholar
|
[90] |
Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials, 2003, 15(5): 464–466
CrossRef
Google scholar
|
[91] |
Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G, Yang P D. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters, 2005, 5(7): 1231–1236
CrossRef
Pubmed
Google scholar
|
[92] |
Greene L E, Yuhas B D, Law M, Zitoun D, Yang P D. Solution-grown zinc oxide nanowires. Inorganic Chemistry, 2006, 45(19): 7535–7543
CrossRef
Pubmed
Google scholar
|
[93] |
Choy J H, Jang E S, Won J H, Chung J H, Jang D J, King Y W. Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser. Advanced Materials, 2003, 15(22): 1911–1914
CrossRef
Google scholar
|
[94] |
Govender K, Boyle D S, O’Brien P, Binks D, West D, Coleman D. Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition. Advanced Materials, 2002, 14(17): 1221–1224
CrossRef
Google scholar
|
[95] |
Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H J. Controlled growth of ZnO nanowires and their optical properties. Advanced Materials, 2002, 12(5): 323–331
|
[96] |
Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 2003, 125: 4403–4431
|
[97] |
Sun Y, Riley D J, Ashfold M N R. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. Journal of Physical Chemistry B, 2006, 110(31): 15186–15192
CrossRef
Google scholar
|
[98] |
Sun Y, Fuge G M, Fox N A, Riley D J, Ashfold M N R. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO Film. Advanced Materials, 2005, 17(20): 2477–2481
CrossRef
Google scholar
|
[99] |
Sun Y, Ndifor-Angwafora N G, Rileya D J, Ashfold M N R. Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chemical Physics Letters, 2006, 431(4–6): 352–357
CrossRef
Google scholar
|
[100] |
She G W, Zhang X H, Shi W S, Fan X, Chang J C, Lee C S, Lee S T, Liu C H. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Applied Physics Letters, 2008, 92(5): 053111-1–053111-3
CrossRef
Google scholar
|
[101] |
Liu J P, Xu C X, Zhu G P, Li X, Cui Y P, Yang Y, Sun X W. Hydrothermally grown ZnO nanorods on self-source substrate and their field emission. Journal of Physics D, Applied Physics, 2007, 40(7): 1906–1909
|
[102] |
Wang Y X, Li X Y, Lu G, Quan X, Chen G H. Highly oriented 1-D ZnO nanorod arrays on zinc foil: Direct growth from substrate, optical properties and photocatalytic activities. Journal of Physical Chemistry C, 2008, 112(19): 7332–7336
CrossRef
Google scholar
|
[103] |
Lu C H, Qi L M, Yang J H, Tang L, Zhang D Y, Ma J M. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chemical Communications (Cambridge), 2006, (33): 3551–3553
CrossRef
Google scholar
|
[104] |
Yang H Q, Song Y Z, Li L, Ma J H, Chen D C, Mai S L, Zhao H. Large-scale growth of highly oriented ZnO nanorod arrays in the Zn-NH3·H2O hydrothermal system. Crystal Growth & Design, 2008, 8(3): 1039–1043
CrossRef
Google scholar
|
[105] |
Dev A, Kar S, Chakrabarti S, Chaudhuri S. Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route. Nanotechnology, 2006, 17(5): 1533–1540
CrossRef
Google scholar
|
[106] |
Yin M, Wu C K, Lou Y B, Burda C, Koberstein J T, Zhu Y, O’Brien S. Copper oxide nanocrystals. Journal of the American Chemical Society, 2005, 127(26): 9506–9511
CrossRef
Pubmed
Google scholar
|
[107] |
Yahus B D, Yang P D. Nanowire-based all-oxide solar cells . Journal of the American Chemical Society, 2009, 131(10): 3756–3761
CrossRef
Pubmed
Google scholar
|
[108] |
Yin M, O’Brien S. Synthesis of monodisperse nanocrystals of manganese oxides. Journal of the American Chemical Society, 2003, 125(34): 10180–10181
CrossRef
Pubmed
Google scholar
|
[109] |
Yin M, Gu Y, Kuskovsky I L, Andelman T, Zhu Y, Neumark G F, O’Brien S. Zinc oxide quantum rods. Journal of the American Chemical Society, 2004, 126(20): 6206–6207
CrossRef
Pubmed
Google scholar
|
[110] |
Yuhas B D, Zitoun D O, Pauzauskie P J, He R, Yang P D. Transition-metal doped zinc oxide nanowires. Angewandte Chemie International Edition, 2006, 45(3): 420–423
CrossRef
Google scholar
|
[111] |
Liang W J, Yuhas B D, Yang P D. Magnetotransport in Co-doped ZnO nanowires. Nano Letters, 2009, 9(2): 892–896
CrossRef
Pubmed
Google scholar
|
[112] |
Wu H, Pan W. Preparation of zinc oxide nanofibers by electrospinning. Journal of the American Ceramic Society, 2006, 89(2): 699–701
CrossRef
Google scholar
|
[113] |
Pradhan D, Leung K T. Vertical growth of two-dimensional zinc oxide nanostructures on ITO-coated glass: effects of deposition temperature and deposition time. Journal of Physical Chemistry C, 2008, 112(5): 1357–1364
CrossRef
Google scholar
|
[114] |
Inamdar A I, Mujawar S H, Ganesan V, Patil P S. Surfactant-mediated growth of nanostructured zinc oxide thin films via electrodeposition and their photoelectrochemical performance. Nanotechnology, 2008, 19(32): 325706-1–325706-7
CrossRef
Pubmed
Google scholar
|
[115] |
Rakhshani A E. Optical and electrical characterization of well-aligned ZnO rods electrodeposited on stainless steel foil. Applied Physics A, Materials Science & Processing, 2008, 92(2): 303–308
CrossRef
Google scholar
|
[116] |
Chen J, Aé L, Aichele C, Lux-Steiner M C. High internal quantum efficiency ZnO nanorods prepared at low temperature. Applied Physics Letters, 2008, 92(16): 161906-1–161906-3
CrossRef
Google scholar
|
[117] |
Elias J, Tena-Zaera R, Wang G Y, Lévy-Clément C. Conversion of ZnO nanowires into nanotubes with tailored dimensions. Chemistry of Materials, 2008, 20(21): 6633–6637
CrossRef
Google scholar
|
[118] |
Xu L F, Liao Q, Zhang J P, Ai X C, Xu D S. Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods. Journal of Physical Chemistry C, 2007, 111(12): 4539–4552
|
[119] |
Siddheswaran R, Sankar R, Babu M R, Rathnakumari M, Jayavel R, Murugakoothan P, Sureshkumar P. Preparation and characterization of ZnO nanofibers by electrospinning. Crystal Research and Technology, 2006, 41(5): 446–449
CrossRef
Google scholar
|
[120] |
Liu H Q, Yang J X, Liang J H, Huang Y X, Tang C Y. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. Journal of the American Ceramic Society, 2008, 91(4): 1287–1291
CrossRef
Google scholar
|
[121] |
Wu H, Lin D D, Zhang R, Pan W. ZnO nanofiber field-effect transistor assembled by electrospinning. Journal of the American Ceramic Society, 2008, 91(2): 656–659
CrossRef
Google scholar
|
[122] |
Wang W, Huang H M, Li Z Y, Zhang H N, Wang Y, Zheng W, Wang C. Zinc oxide nanofiber gas sensors via electrospinning. Journal of the American Ceramic Society, 2008, 91(11): 3817–3819
CrossRef
Google scholar
|
[123] |
Viswanathamurthi P, Bhattarai N, Kim H Y, Lee D R. The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning. Nanotechnology, 2004, 15(3): 320–323
CrossRef
Google scholar
|
[124] |
Keller F, Hunter M S, Robinson D L. Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society, 1953, 100(9): 411–419
CrossRef
Google scholar
|
[125] |
Martinson A B F, Elam J W, Hupp J T, Pellin M J. ZnO nanotube based dye-sensitized solar cells. Nano Letters, 2007, 7(8): 2183–2187
CrossRef
Pubmed
Google scholar
|
[126] |
Shen X P, Yuan A H, Hu Y M, Jiang Y, Xu Z, Hu Z. Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays. Nanotechnology, 2005, 16(10): 2039–2043
CrossRef
Pubmed
Google scholar
|
[127] |
Wei A, Sun X W, Xu C X, Dong Z L, Yu M B, Huang W. Stable field emission from hydrothermally grown ZnO nanotubes. Applied Physics Letters, 2006, 88(21): 213102-1–213102-3
CrossRef
Google scholar
|
[128] |
Unalan H E, Hiralal P, Rupesinghe N, Dalal S, Milne W I, Amaratunga G A J. Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology, 2008, 19(25): 255608-1–255608-5
CrossRef
Pubmed
Google scholar
|
[129] |
Lommens P, Thourhout D V, Smet P F, Poelman D, Hens Z. Electrophoretic deposition of ZnO nanoparticles, from micropatterns to substrate coverage. Nanotechnology, 2008, 19(24): 245301-1–245301-6
CrossRef
Pubmed
Google scholar
|
[130] |
Yang H Y, Lau S P, Yu S F, Huang L, Tanemura M, Tanaka J, Okita T, Hng H H. Field emission from zinc oxide nanoneedles on plastic substrates. Nanotechnology, 2005, 16(8): 1300–1303
CrossRef
Google scholar
|
[131] |
Zhang H Z, Wang R M, Zhu Y W. Effect of adsorbates on field-electron emission from ZnO nanoneedle arrays. Journal of Applied Physics, 2004, 96(1): 624–628
CrossRef
Google scholar
|
[132] |
Jo S H, Banerjee D, Ren Z F. Field emission of zinc oxide nanowires grown on carbon cloth. Applied Physics Letters, 2004, 85(8): 1407–1409
CrossRef
Google scholar
|
[133] |
Ham H, Shen G Z, Cho J H, Lee T J, Seo S H, Lee C J. Vertically aligned ZnO nanowires produced by a catalyst-free thermal evaporation method and their field emission properties. Chemical Physics Letters, 2005, 404(1–3): 69–73
CrossRef
Google scholar
|
[134] |
Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S, Chen I C. Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Advanced Functional Materials, 2003, 13(10): 811–814
CrossRef
Google scholar
|
[135] |
Xu C X, Sun X W, Fang S N, Yang X H, Yu M B, Zhu G P, Cui Y P. Electrochemically deposited zinc oxide arrays for field emission. Applied Physics Letters, 2006, 88(16): 161921-1–161921-3
CrossRef
Google scholar
|
[136] |
Minami T, Miyata T, Yamamoto T. Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering. Surface and Coatings Technology, 1998, 108–109: 583–587
CrossRef
Google scholar
|
[137] |
Xu C X, Sun X W, Chen B J. Field emission from gallium-doped zinc oxide nanofiber array. Applied Physics Letters, 2004, 84(9): 1540–1542
CrossRef
Google scholar
|
[138] |
Yeong K S, Maung K H, Thong J T L. The effects of gas exposure and UV illumination on field emission from individual ZnO nanowires. Nanotechnology, 2007, 18(18): 185608-1–185608-4
CrossRef
Google scholar
|
[139] |
Ye C H, Bando Y, Fang X S, Shen G Z, Golberg D. Enhanced field emission performance of ZnO nanorods by two alternative approaches. Journal of Physical Chemistry C, 2007, 111(34): 12673–12676
CrossRef
Google scholar
|
[140] |
Chang C C, Chang C S. Site-specific growth to control ZnO nanorods density and related field emission properties. Solid State Communications, 2005, 135(11–12): 765–768
CrossRef
Google scholar
|
[141] |
Liu J, She J C, Deng S Z, Chen J, Xu N S. Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics. Journal of Physical Chemistry C, 2008, 112(31): 11685–11690
CrossRef
Google scholar
|
[142] |
Zhao Q, Zhang H Z, Zhu Y W, Feng S Q, Sun X C, Xu J, Yu D P. Morphological effects on the field emission of ZnO nanorod arrays. Applied Physics Letters, 2005, 86(20): 203115-1–203115-3
CrossRef
Google scholar
|
[143] |
Banerjee D, Jo S H, Ren Z F. Enhanced field emission of ZnO nanowires. Advanced Materials, 2004, 16(22): 2028–2032
CrossRef
Google scholar
|
[144] |
Yoo J, Park W I, Yi G C. Electrical and optical characteristics of hydrogen-plasma treated ZnO nanoneedles. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2005, 23(5): 1970–1974
CrossRef
Google scholar
|
[145] |
Li C, Fang G J, Yuan L Y, Liu N S, Li J, Li D J, Zhao X Z. Field electron emission improvement of ZnO nanorod arrays after Ar plasma treatment. Applied Surface Science, 2007, 253(20): 8748–8482
|
[146] |
Zhao Q, Xu X Y, Song X F, Zhang X Z, Yu D P, Li C P, Guo L. Enhanced field emission from ZnO nanorods via thermal annealing in oxygen. Applied Physics Letters, 2006, 88(3): 033102-1–033102-3
CrossRef
Google scholar
|
[147] |
Li Q H, Wan Q, Chen Y J, Wang T H, Jia H B, Yu D P. Stable field emission from tetrapod-like ZnO nanostructures. Applied Physics Letters, 2004, 85(4): 636–638
CrossRef
Google scholar
|
[148] |
Liao L, Li J C, Wang D F, Liu C, Fu Q. Electron field emission studies on ZnO nanowires. Materials Letters, 2005, 59(19–20): 2465–2467
CrossRef
Google scholar
|
[149] |
Cheng J P, Zhang Y J, Guo R Y. Field emission properties of ZnO single crystal microtubes. Journal of Applied Physics, 2009, 105(3): 0234103-1–0234103-4
|
[150] |
Liu J P, Huang X T, Li Y Y, Ji X X, Li Z K, He X, Sun F L. Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: direct solution synthesis, photoluminescence, and field emission. Journal of Physical Chemistry C, 2007, 111(13): 4990–4997
CrossRef
Google scholar
|
[151] |
Dong L F, Jiao J, Tuggle D W, Petty J M, Elliff S A, Coulter M. ZnO nanowires formed on tungsten substrates and their electron field emission properties. Applied Physics Letters, 2003, 82(7): 1096–1098
CrossRef
Google scholar
|
[152] |
Umar A, Kim S H, Lee H, Lee N, Hahn Y B. Optical and field emission properties of single-crystalline aligned ZnO nanorods grown on aluminium substrate. Journal of Physics D, Applied Physics, 2008, 41(6): 065412-1–065412-6
CrossRef
Google scholar
|
[153] |
Huang M H, Mao S, Feick H, Yan H, Wu Y Y, Kind H, Weber E, Russo R, Yang P D. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897–1899
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |