High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode
Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN
High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode
A monobasal solid-state dye-sensitized solar cell (ssDSC) with mesoporous TiO2 beads was developed and an efficiency of 4% was achieved under air mass (AM) 1.5 illumination. Scattering properties and electron diffusion coefficients of TiO2 mesoporous beads and P25 nano-particles were investigated. The results show that TiO2 mesoporous beads display higher scatterance than P25 nano-particles, and TiO2 mesoporous beads have higher electron diffusion coefficients (2.86 × 10-5 cm2∙s-1) than P25 nano-particles (2.26 × 10-5 cm2∙s-1).
dye-sensitized solar cells (DSCs) / mesoporous beads / scattering / electron diffusion coefficients
[1] |
O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740
CrossRef
Google scholar
|
[2] |
Yella A, Lee H W, Tsao H N, Yi C Y, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629-634PMID:22053043
CrossRef
Google scholar
|
[3] |
Hagen J, Schaffrath W, Otschik P, Fink R, Bacher A, Schmidt H W, Haarer D. Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material. Synthetic Metals, 1997, 89(3): 215-220
CrossRef
Google scholar
|
[4] |
Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Grätzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583-585
CrossRef
Google scholar
|
[5] |
Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M. Organic dye for highly efficient solid-state dye-sensitized solar cells. Advanced Materials, 2005, 17(7): 813-815
CrossRef
Google scholar
|
[6] |
Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C Y, Nazeeruddin M K, Grätzel M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2011, 133(45): 18042-18045
CrossRef
Pubmed
Google scholar
|
[7] |
Cai N, Moon S J, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P, Zakeeruddin S M, Grätzel M. An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Letters, 2011, 11(4): 1452-1456
CrossRef
Pubmed
Google scholar
|
[8] |
Snaith H J, Moule A J, Klein C, Meerholz K, Friend R H, Grätzel M. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Letters, 2007, 7(11): 3372-3376
CrossRef
Pubmed
Google scholar
|
[9] |
Mor G K, Kim S, Paulose M, Varghese O K, Shankar K, Basham J, Grimes C A. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Letters, 2009, 9(12): 4250-4257
CrossRef
Pubmed
Google scholar
|
[10] |
Wang M, Bai J, Le Formal F, Moon S J, Cevey-Ha L, Humphry-Baker R, Grätzel C, Zakeeruddin S M, Grätzel M. Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. Journal of Physical Chemistry C, 2012, 116(5): 3266-3273
CrossRef
Google scholar
|
[11] |
Zhang W, Zhu R, Ke L, Liu X, Liu B, Ramakrishna S. Anatase mesoporous TiO2 nanofibers with high surface area for solid-state dye-sensitized solar cells. Small, 2010, 6(19): 2176-2182
CrossRef
Pubmed
Google scholar
|
[12] |
Tétreault N, Horváth E, Moehl T, Brillet J, Smajda R, Bungener S, Cai N, Wang P, Zakeeruddin S M, Forró L, Magrez A, Grätzel M. High-efficiency solid-state dye-sensitized solar cells: fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires. ACS Nano, 2010, 4(12): 7644-7650
CrossRef
Pubmed
Google scholar
|
[13] |
Wang H, Liu G H, Li X, Xiang P, Ku Z L, Rong Y G, Xu M, Liu L F, Hu M, Yang Y, Han H W. Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode. Energy & Environmental Science, 2011, 4(6): 2025-2029
|
[14] |
Chen D, Huang F, Cheng Y B, Caruso R A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Advanced Materials, 2009, 21(21): 2206-2210
CrossRef
Google scholar
|
[15] |
Xiang P, Li X, Wang H, Liu G H, Shu T, Zhou Z M, Ku Z L, Rong Y G, Xu M, Liu L F, Hu M, Yang Y, Chen W, Liu T F, Zhang M L, Han H W. Mesoporous nitrogen-doped TiO2 sphere applied for quasi-solid-state dye-sensitized solar cell. Nanoscale Research Letters, 2011, 6(1): 1-5
CrossRef
Pubmed
Google scholar
|
[16] |
Tiwana P, Parkinson P, Johnston M B, Snaith H J, Herz L M. Ultrafast terahertz conductivity dynamics in mesoporous TiO2: influence of dye sensitization and surface treatment in solid-state dye-sensitized solar cells. Journal of Physical Chemistry C, 2010, 114(2): 1365-1371
CrossRef
Google scholar
|
/
〈 | 〉 |