Selective growth and characterization of ZnO nanorods assembled a hexagonal pattern on H2-decomposed GaN epilayer
Yu TIAN, Huiquan CHEN, Xiaolong ZHU, Guang ZHENG, Jiangnan DAI
Selective growth and characterization of ZnO nanorods assembled a hexagonal pattern on H2-decomposed GaN epilayer
This paper reported a simple and effective method for fabricating and patterning highly ordered ZnO nanorod arrays on H2-decomposed GaN epilayer via hydrothermal route. The edge of pattern, which has been decomposed by H2 flow, provides appropriate nucleation sites for the selective-growth of aligned ZnO nanorods. The density of ZnO nanorod arrays assembled the hexagonal pattern can be tuned by varying the solution concentrations, growth time and reaction temperatures. The results have demonstrated that the ZnO nanorods are highly uniform in diameter and height with perfect alignment and are epitaxially grown along [0001] direction. This work provides a novel and accessible route to prepare oriented and aligned ZnO nanorod arrays pattern. And the aligned ZnO nanorods form an ideal hexagonal pattern that might be used in many potential applications of ZnO nanomaterials.
ZnO nanorod / GaN epilayer / hexagonal pattern / hydrothermal
[1] |
Wang X D, Song J H, Liu J, Wang Z L. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316(5821): 102-105
CrossRef
Pubmed
Google scholar
|
[2] |
Lee S W, Jeong M C, Myoung J M, Chae G S, Chung I J. Magnetic alignment of ZnO nanowires for optoelectronic device applications. Applied Physics Letters, 2007, 90(13): 133115
CrossRef
Google scholar
|
[3] |
Lee Y J, Ruby D S, Peters D W, McKenzie B B, Hsu J W P. ZnO nanostructures as efficient antireflection layers in solar cells. Nano Letters, 2008, 8(5): 1501-1505
CrossRef
Pubmed
Google scholar
|
[4] |
Lin M S, Chen C C, Wang W C, Lin C F, Chang S Y. Fabrication of the selective-growth ZnO nanorods with a hole-array pattern on a p-type GaN:Mg layer through a chemical bath deposition process. Thin Solid Films, 2010, 518(24): 7398-7402
CrossRef
Google scholar
|
[5] |
Xu S, Xu C, Liu Y, Hu Y F, Yang R S, Yang Q, Ryou J H, Kim H J, Lochner Z, Choi S, Dupuis R, Wang Z L. Ordered nanowire array blue/near-UV light emitting diodes. Advanced Materials, 2010, 22(42): 4749-4753
CrossRef
Pubmed
Google scholar
|
[6] |
Ng H T, Han J, Yamada T, Nguyen P, Chen Y P, Meyyappan M. Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor. Nano Letters, 2004, 4(7): 1247-1252
CrossRef
Google scholar
|
[7] |
Kim D S, Ji R, Fan H J, Bertram F, Scholz R, Dadgar A, Nielsch K, Krost A, Christen J, Gösele U, Zacharias M. Laser-interference lithography tailored for highly symmetrically arranged ZnO nanowire arrays. Small, 2007, 3(1): 76-80
CrossRef
Pubmed
Google scholar
|
[8] |
Hochbaum A I, Fan R, He R, Yang P. Controlled growth of Si nanowire arrays for device integration. Nano Letters, 2005, 5(3): 457-460
CrossRef
Pubmed
Google scholar
|
[9] |
Dong J J, Zhang X W, Yin Z G, Zhang S G, Wang J X, Tan H R, Gao Y, Si F T, Gao H L. Controllable Growth of Highly Ordered ZnO Nanorod Arrays via Inverted Self-Assembled Monolayer Template. Appl. Mater. Interfaces, 2011, 3(11): 4388-4395
CrossRef
Google scholar
|
[10] |
Fan H J. B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, M. Zacharias. Journal of Crystal Growth, 2006, 287: 34-38
CrossRef
Google scholar
|
[11] |
Zeng H B, Xu X J, Bando Y, Gautam U K, Zhai T Y, Fang X S, Liu B D, Golberg D. Template Deformation-Tailored ZnO Nanorod/Nanowire Arrays: Full Growth Control and Optimization of Field-Emission. Advanced Functional Materials, 2009, 19(19): 3165-3172
CrossRef
Google scholar
|
[12] |
Cheng C, Lei M, Feng L, Wong T L, Ho K M, Fung K K, Loy M M T, Yu D P, Wang N. High-quality ZnO nanowire arrays directly fabricated from photoresists. ACS Nano, 2009, 3(1): 53-58
CrossRef
Pubmed
Google scholar
|
[13] |
Hong Y J, An S J, Jung H S, Lee C H, Yi G C. Position-Controlled Selective Growth of ZnO Nanorods on Si Substrates Using Facet-Controlled GaN Micropatterns. Advanced Materials, 2007, 19(24): 4416-4419
CrossRef
Google scholar
|
[14] |
Hong Y J, Yoo J, Doh Y J, Kang S H, Kong K J, Kim M, Lee D R, Oh K H, Yi G C J. Controlled epitaxial growth modes of ZnO nanostructures using different substrate crystal planes. Materials Chemistry, 2009, 19(7): 941-947
CrossRef
Google scholar
|
[15] |
Le H Q, Chua S J, Koh Y W, Loh K P, Chen Z, Thompson C V, Fitzgerald E A. Growth of single crystal ZnO nanorods on GaN using an aqueous solution method. Applied Physics Letters, 2005, 87(10): 101908
CrossRef
Google scholar
|
[16] |
Wei Y G, Wu W Z, Guo R, Yuan D J, Das S, Wang Z L. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano Letters, 2010, 10(9): 3414-3419
CrossRef
Pubmed
Google scholar
|
[17] |
Tay C B, Le H Q, Chua S J, Loh K P J. Empirical Model for Density and Length Prediction of ZnO Nanorods on GaN Using Hydrothermal Synthesis. Electrochem Soc., 2007, 154(9): K45
CrossRef
Google scholar
|
[18] |
Le H Q, Chua S J, Koh Y W, Loh K P, Fitzgerald E A. Systematic studies of the epitaxial growth of single-crystal ZnO nanorods on GaN using hydrothermal synthesis. Journal of Crystal Growth, 2006, 293(1): 36-42
CrossRef
Google scholar
|
[19] |
Gao H Y, Yan F W, Li J M, Zeng Y P, Wang J X. Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method. Journal of Physics. D, Applied Physics, 2007, 40(12): 3654-3659
CrossRef
Google scholar
|
[20] |
Zhou H L, Shao P G, Chua S J, Kan J A, Bettiol A A, Osipowicz T, Ooi K F, Goh G K L, Watt F. Selective Growth of ZnO Nanorod Arrays on a GaN/Sapphire Substrate Using a Proton Beam Written Mask. Crystal Growth & Design, 2008, 8(12): 4445-4448
CrossRef
Google scholar
|
[21] |
Ye B U, Yu H, Kim M H, Lee J L, Baik J M. Modulating ZnO Nanostructure Arrays on Any Substrates by Nanolevel Structure Control. Journal of Physical Chemistry C, 2011, 115(16): 7987-7992
CrossRef
Google scholar
|
[22] |
Sun Y, Riley J, Ashfold M N R. Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates. Journal of Physical Chemistry B, 2006, 110(31): 15186-15192
CrossRef
Google scholar
|
[23] |
Vispute R D, Talyansky V, Choopun S, Sharma R P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X, Salamanca-Riba L G, Iliadis A A, Jones K A. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Applied Physics Letters, 1998, 73(3): 348
CrossRef
Google scholar
|
[24] |
Huang S Y, Yang J R. A Transmission Electron Microscopy Observation of Dislocations in GaN Grown on (0001) Sapphire by Metal Organic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2008, 47(10): 7998-8002
CrossRef
Google scholar
|
[25] |
Morin S A, Jin S. Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates. Nano Letters, 2010, 10(9): 3459-3463
CrossRef
Pubmed
Google scholar
|
[26] |
Ozgur U, Alivov Ya I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H J. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005, 98(4): 041301
CrossRef
Google scholar
|
[27] |
Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897-1899
CrossRef
Pubmed
Google scholar
|
[28] |
Zhang J, Sun L D, Liao C S, Yang C H. A simple route towards tubular ZnO. Chemical Communications (Cambridge), 2002, 3(3): 262-263
CrossRef
Google scholar
|
[29] |
Li Z Q, Xiong Y J, Xie Y. Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorganic Chemistry, 2003, 42(24): 8105-8109
CrossRef
Pubmed
Google scholar
|
[30] |
Chen S J, Liu Y C, Shao C L, Mu R, Lu Y M, Zhang J Y, Shen D Z, Fan X W. Structural and Optical Properties of Uniform ZnO Nanosheets. Advanced Materials, 2005, 17(5): 586-590
CrossRef
Google scholar
|
[31] |
Zeng H, Duan G T, Li Y, Yang S K, Xu X X, Cai W P. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Advanced Functional Materials, 2010, 20(4): 561-572
CrossRef
Google scholar
|
/
〈 | 〉 |