Monolithic all-solid-state dye-sensitized solar cells
Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN
Monolithic all-solid-state dye-sensitized solar cells
As a low-cost photovoltaic technology, dye-sensitized solar cell (DSSC) has attracted widespread attention in the past decade. During its development to commercial application, decreasing the production cost and increasing the device stability take the most importance. Compared with conventional sandwich structure liquid-state DSSCs, monolithic all-solid-state mesoscopic solar cells based on mesoscopic carbon counter electrodes and solid-state electrolytes present much lower production cost and provide a prospect of long-term stability. This review presents the recent progress of materials and achievement for all-solid-state DSSCs. In particular, representative examples are highlighted with the results of our monolithic all-solid-state mesoscopic solar cell devices and modules.
photovoltaic (PV) technology / monolithic / dye-sensitized solar cells (DSSCs) / all-solid-state / mesoscopic / carbon counter electrode
[1] |
O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740
CrossRef
Google scholar
|
[2] |
Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344
CrossRef
Pubmed
Google scholar
|
[3] |
Hagfeldt A, Boschloo G, Sun L C, Kloo L, Pettersson H. Dye-sensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663
CrossRef
Pubmed
Google scholar
|
[4] |
Chiba Y, Islam A, Komiya R, Koide N, Han L Y. Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze. Applied Physics Letters, 2006, 88(22): 223505-1–223505-3
CrossRef
Google scholar
|
[5] |
Han L Y, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S F, Yang X D, Yanagida M. High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy & Environmental Sciences, 2012, 5(3): 6057–6060
CrossRef
Google scholar
|
[6] |
Yella A, Lee H W, Tsao H N, Yi C Y, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629–634
CrossRef
Pubmed
Google scholar
|
[7] |
Hardin B E, Snaith H J, McGehee M D. The renaissance of dye-sensitized solar cells. Nature Photonics, 2012, 6(3): 162–169
CrossRef
Google scholar
|
[8] |
Kroon J M, Bakker N J, Smit H J P, Liska P, Thampi K R, Wang P, Zakeeruddin S M, Grätzel M, Hinsch A, Hore S, Wurfel U, Sastrawan R, Durrant J R, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, Tulloch G E. Nanocrystalline dye-sensitized solar cells having maximum performance. Progress in Photovoltaics: Research and Applications, 2007, 15(1): 1–18
CrossRef
Google scholar
|
[9] |
Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z. ZnO nanostructures for dye-sensitized solar cells. Advanced Materials, 2009, 21(41): 4087–4108
CrossRef
Google scholar
|
[10] |
Kay A, Grätzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 1996, 44(1): 99–117
CrossRef
Google scholar
|
[11] |
Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Grätzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583–585
CrossRef
Google scholar
|
[12] |
Melas-Kyriazi J, Ding I K, Marchioro A, Punzi A, Hardin B E, Burkhard G F, Tetreault N, Grätzel M, Moser J E, McGehee M D. The effect of hole transport material pore filling on photovoltaic performance in solid-state dye-sensitized solar cells. Advanced Energy Materials, 2011, 1(3): 407–414
|
[13] |
Snaith H J, Moule A J, Klein C, Meerholz K, Friend R H, Grätzel M. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Letters, 2007, 7(11): 3372–3376
CrossRef
Pubmed
Google scholar
|
[14] |
Wang H, Liu G H, Li X, Xiang P, Ku Z L, Rong Y G, Xu M, Liu L F, Hu M, Yang Y, Han H W. Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon CE. Energy & Environmental Sciences, 2011, 4(6): 2025–2029
CrossRef
Google scholar
|
[15] |
Han H W, Liu W, Zhang J, Zhao X Z. A hybrid poly(ethylene oxide)/poly(vinylidene fluoride)/TiO2 nanoparticle solid-state redox electrolyte for dye-sensitized nanocrystalline solar cells. Advanced Functional Materials, 2005, 15(12): 1940–1944
CrossRef
Google scholar
|
[16] |
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643–647
CrossRef
Pubmed
Google scholar
|
[17] |
Chung I, Lee B, He J Q, Chang R P H, Kanatzidis M G. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399): 486–489
CrossRef
Pubmed
Google scholar
|
[18] |
Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters, 2013, 13(4): 1764–1769
CrossRef
Pubmed
Google scholar
|
[19] |
Han H W, Bach U, Cheng Y B, Caruso R A, MacRae C. A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode. Applied Physics Letters, 2009, 94(10): 103102-1–103102-3
CrossRef
Google scholar
|
[20] |
Skupien K, Putyra P, Walter J, Kozłowski R H, Khelashvili G. Catalytic materials manufactured by the polyol process for monolithic dye-sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2009, 17(1): 67–73
|
[21] |
Liu G H, Wang H, Li X, Rong Y G, Ku Z L, Xu M, Liu L F, Hu M, Yang Y, Xiang P, Shu T, Han H W. A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell. Electrochimica Acta, 2012, 69: 334–339
CrossRef
Google scholar
|
[22] |
Hinsch A, Behrens S, Berginc M, Bönnemann H, Brandt H, Drewitz A, Einsele F, Faßler D, Gerhard D, Gores H, Haag R, Herzig T, Himmler S, Khelashvili G, Koch D, Nazmutdinova G, Opara-Krasovec U, Putyra P, Rau U, Sastrawan R, Schauer T, Schreiner C, Sensfuss S, Siegers C, Skupien K, Wachter P, Walter J, Wasserscheid P, Würfel U, Zistler M. Material development for dye solar modules: Results from an integrated approach. Progress in Photovoltaics: Research and Applications, 2008, 16(6): 489–501
CrossRef
Google scholar
|
[23] |
Krüger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Applied Physics Letters, 2001, 79(13): 2085–2087
CrossRef
Google scholar
|
[24] |
Krüger J, Plass R, Grätzel M, Matthieu H J. Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4′-dicarboxy- 2,2′bipyridine)-bis(isothiocyanato) ruthenium(II). Applied Physics Letters, 2002, 81(2): 367–369
CrossRef
Google scholar
|
[25] |
Schmidt-Mende L, Zakeeruddin S M, Grätzel M. Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic ruthenium-dye. Applied Physics Letters, 2005, 86(1): 013504-1–013504-3
CrossRef
Google scholar
|
[26] |
Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M. Organic dye for highly efficient solid-state dye-sensitized solar cells. Advanced Materials, 2005, 17(7): 813–815
CrossRef
Google scholar
|
[27] |
Cai N, Moon S J, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P, Zakeeruddin S M, Grätzel M. An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Letters, 2011, 11(4): 1452–1456
CrossRef
Pubmed
Google scholar
|
[28] |
Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C Y, Nazeeruddin M K, Grätzel M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2011, 133(45): 18042–18045
CrossRef
Pubmed
Google scholar
|
[29] |
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2: 591
CrossRef
Google scholar
|
[30] |
Chang J A, Rhee J H, Im S H, Lee Y H, Kim H J, Seok S I, Nazeeruddin M K, Grätzel M. High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Letters, 2010, 10(7): 2609–2612
CrossRef
Pubmed
Google scholar
|
[31] |
Zhu R, Jiang C Y, Liu B, Ramakrishna S. Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye. Advanced Materials, 2009, 21(9): 994–1000
CrossRef
Google scholar
|
[32] |
Mor G K, Kim S, Paulose M, Varghese O K, Shankar K, Basham J, Grimes C A. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Letters, 2009, 9(12): 4250–4257
CrossRef
Pubmed
Google scholar
|
[33] |
Moon S J, Baranoff E, Zakeeruddin S M, Yeh C Y, Diau E W G, Grätzel M, Sivula K. Enhanced light harvesting in mesoporous TiO2/P3HT hybrid solar cells using a porphyrin dye. Chemical Communications (Cambridge), 2011, 47: 8244–8246
|
[34] |
Zhang W, Zhu R, Li F, Wang Q, Liu B. High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter. Journal of Physical Chemistry C, 2011, 115(14): 7038–7043
CrossRef
Google scholar
|
[35] |
Rong Y G, Li X, Ku Z L, Liu G H, Wang H, Xu M, Liu L F, Hu M, Xiang P, Zhou Z M, Shu T, Han H W. Monolithic all-solid-state dye-sensitized solar module based on mesoscopic carbon counter electrodes. Solar Energy Materials and Solar Cells, 2012, 105: 148–152
CrossRef
Google scholar
|
[36] |
Xu M, Liu G H, Li X, Wang H, Rong Y G, Ku Z L, Hu M, Yang Y, Liu L F, Liu T F, Chen J Z, Han H W. Efficient monolithic solid-state dye-sensitized solar cell with a low-cost mesoscopic carbon based screen printable counter electrode. Organic Electronics, 2013, 14(2): 628–634
CrossRef
Google scholar
|
[37] |
Dai S Y, Wang K J, Weng J, Sui Y F, Huang Y, Xiao S F, Chen S H, Hu L H, Kong F T, Pan X, Shi C W, Guo L. Design of DSC panel with efficiency more than 6%. Solar Energy Materials and Solar Cells, 2005, 85(3): 447–455
CrossRef
Google scholar
|
[38] |
Han L T, Fukui A, Chiba Y, Islam A, Komiya R, Fuke N, Koide N, Yamanaka R, Shimizu M. Integrated dye-sensitized solar cell module with conversion efficiency of 8.2%. Applied Physics Letters, 2009, 94(1): 013305-1–013305-3
CrossRef
Google scholar
|
[39] |
Meyer T, Martineau D, Azarn A, Meyer A. All screen printed dye solar cell. Organic Photovoltaics VIII, 2007, 6656: 65608-1–65608-11
|
[40] |
Meyer T, Scott M, Azam A, Martineau D, Oswald F, Narbey S, Laporte G, Cisneros R, Tregnano G, Meyer A. CleanTechDay 3rd Generation Photovoltaics, CSEM, Basel, 18 August 2009
|
[41] |
Pettersson H, Gruszecki T. Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods. Solar Energy Materials and Solar Cells, 2001, 70(2): 203–212
CrossRef
Google scholar
|
[42] |
Pettersson H, Gruszecki T, Johansson L H, Johander P. Manufacturing method for monolithic dye-sensitised solar cells permitting long-term stable low-power modules. Solar Energy Materials and Solar Cells, 2003, 77(4): 405–413
CrossRef
Google scholar
|
[43] |
Pettersson H, Gruszecki T, Schnetz C, Streit M, Xu Y H, Sun L C, Gorlov M, Kloo L, Boschloo G, Haggman L, Hagfeldt A. Parallel-connected monolithic dye-sensitised solar modules. Progress in Photovoltaics: Research and Applications, 2010, 18(5): 340–345
CrossRef
Google scholar
|
[44] |
Pettersson H, Gruszecki T, Bernhard R, Haggman L, Gorlov M, Boschloo G, Edvinsson T, Kloo L, Hagfeldt A. The monolithic multicell: a tool for testing material components in dye-sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2007, 15(2): 113–121
CrossRef
Google scholar
|
[45] |
Rong Y G, Han H W. Monolithic quasi-solid-state dye-sensitized solar cells based on graphene modified mesoscopic carbon-counter electrodes. Journal of Nanophotonics, 2013, 7(1): 073090
CrossRef
Google scholar
|
[46] |
Hinsch A, Kroon J M, Kern R, Uhlendorf I, Holzbock J, Meyer A, Ferber J. Long-term stability of dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications, 2001, 9(6): 425–438
CrossRef
Google scholar
|
/
〈 | 〉 |