Monolithic all-solid-state dye-sensitized solar cells

Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN

PDF(888 KB)
PDF(888 KB)
Front. Optoelectron. ›› 2013, Vol. 6 ›› Issue (4) : 359-372. DOI: 10.1007/s12200-013-0346-6
REVIEW ARTICLE
REVIEW ARTICLE

Monolithic all-solid-state dye-sensitized solar cells

Author information +
History +

Abstract

As a low-cost photovoltaic technology, dye-sensitized solar cell (DSSC) has attracted widespread attention in the past decade. During its development to commercial application, decreasing the production cost and increasing the device stability take the most importance. Compared with conventional sandwich structure liquid-state DSSCs, monolithic all-solid-state mesoscopic solar cells based on mesoscopic carbon counter electrodes and solid-state electrolytes present much lower production cost and provide a prospect of long-term stability. This review presents the recent progress of materials and achievement for all-solid-state DSSCs. In particular, representative examples are highlighted with the results of our monolithic all-solid-state mesoscopic solar cell devices and modules.

Keywords

photovoltaic (PV) technology / monolithic / dye-sensitized solar cells (DSSCs) / all-solid-state / mesoscopic / carbon counter electrode

Cite this article

Download citation ▾
Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN. Monolithic all-solid-state dye-sensitized solar cells. Front Optoelec, 2013, 6(4): 359‒372 https://doi.org/10.1007/s12200-013-0346-6

References

[1]
O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740
CrossRef Google scholar
[2]
Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344
CrossRef Pubmed Google scholar
[3]
Hagfeldt A, Boschloo G, Sun L C, Kloo L, Pettersson H. Dye-sensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663
CrossRef Pubmed Google scholar
[4]
Chiba Y, Islam A, Komiya R, Koide N, Han L Y. Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze. Applied Physics Letters, 2006, 88(22): 223505-1–223505-3
CrossRef Google scholar
[5]
Han L Y, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S F, Yang X D, Yanagida M. High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy & Environmental Sciences, 2012, 5(3): 6057–6060
CrossRef Google scholar
[6]
Yella A, Lee H W, Tsao H N, Yi C Y, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629–634
CrossRef Pubmed Google scholar
[7]
Hardin B E, Snaith H J, McGehee M D. The renaissance of dye-sensitized solar cells. Nature Photonics, 2012, 6(3): 162–169
CrossRef Google scholar
[8]
Kroon J M, Bakker N J, Smit H J P, Liska P, Thampi K R, Wang P, Zakeeruddin S M, Grätzel M, Hinsch A, Hore S, Wurfel U, Sastrawan R, Durrant J R, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, Tulloch G E. Nanocrystalline dye-sensitized solar cells having maximum performance. Progress in Photovoltaics: Research and Applications, 2007, 15(1): 1–18
CrossRef Google scholar
[9]
Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z. ZnO nanostructures for dye-sensitized solar cells. Advanced Materials, 2009, 21(41): 4087–4108
CrossRef Google scholar
[10]
Kay A, Grätzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 1996, 44(1): 99–117
CrossRef Google scholar
[11]
Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Grätzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583–585
CrossRef Google scholar
[12]
Melas-Kyriazi J, Ding I K, Marchioro A, Punzi A, Hardin B E, Burkhard G F, Tetreault N, Grätzel M, Moser J E, McGehee M D. The effect of hole transport material pore filling on photovoltaic performance in solid-state dye-sensitized solar cells. Advanced Energy Materials, 2011, 1(3): 407–414
[13]
Snaith H J, Moule A J, Klein C, Meerholz K, Friend R H, Grätzel M. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Letters, 2007, 7(11): 3372–3376
CrossRef Pubmed Google scholar
[14]
Wang H, Liu G H, Li X, Xiang P, Ku Z L, Rong Y G, Xu M, Liu L F, Hu M, Yang Y, Han H W. Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon CE. Energy & Environmental Sciences, 2011, 4(6): 2025–2029
CrossRef Google scholar
[15]
Han H W, Liu W, Zhang J, Zhao X Z. A hybrid poly(ethylene oxide)/poly(vinylidene fluoride)/TiO2 nanoparticle solid-state redox electrolyte for dye-sensitized nanocrystalline solar cells. Advanced Functional Materials, 2005, 15(12): 1940–1944
CrossRef Google scholar
[16]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643–647
CrossRef Pubmed Google scholar
[17]
Chung I, Lee B, He J Q, Chang R P H, Kanatzidis M G. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399): 486–489
CrossRef Pubmed Google scholar
[18]
Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters, 2013, 13(4): 1764–1769
CrossRef Pubmed Google scholar
[19]
Han H W, Bach U, Cheng Y B, Caruso R A, MacRae C. A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode. Applied Physics Letters, 2009, 94(10): 103102-1–103102-3
CrossRef Google scholar
[20]
Skupien K, Putyra P, Walter J, Kozłowski R H, Khelashvili G. Catalytic materials manufactured by the polyol process for monolithic dye-sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2009, 17(1): 67–73
[21]
Liu G H, Wang H, Li X, Rong Y G, Ku Z L, Xu M, Liu L F, Hu M, Yang Y, Xiang P, Shu T, Han H W. A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell. Electrochimica Acta, 2012, 69: 334–339
CrossRef Google scholar
[22]
Hinsch A, Behrens S, Berginc M, Bönnemann H, Brandt H, Drewitz A, Einsele F, Faßler D, Gerhard D, Gores H, Haag R, Herzig T, Himmler S, Khelashvili G, Koch D, Nazmutdinova G, Opara-Krasovec U, Putyra P, Rau U, Sastrawan R, Schauer T, Schreiner C, Sensfuss S, Siegers C, Skupien K, Wachter P, Walter J, Wasserscheid P, Würfel U, Zistler M. Material development for dye solar modules: Results from an integrated approach. Progress in Photovoltaics: Research and Applications, 2008, 16(6): 489–501
CrossRef Google scholar
[23]
Krüger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Applied Physics Letters, 2001, 79(13): 2085–2087
CrossRef Google scholar
[24]
Krüger J, Plass R, Grätzel M, Matthieu H J. Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4′-dicarboxy- 2,2′bipyridine)-bis(isothiocyanato) ruthenium(II). Applied Physics Letters, 2002, 81(2): 367–369
CrossRef Google scholar
[25]
Schmidt-Mende L, Zakeeruddin S M, Grätzel M. Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic ruthenium-dye. Applied Physics Letters, 2005, 86(1): 013504-1–013504-3
CrossRef Google scholar
[26]
Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M. Organic dye for highly efficient solid-state dye-sensitized solar cells. Advanced Materials, 2005, 17(7): 813–815
CrossRef Google scholar
[27]
Cai N, Moon S J, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P, Zakeeruddin S M, Grätzel M. An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Letters, 2011, 11(4): 1452–1456
CrossRef Pubmed Google scholar
[28]
Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C Y, Nazeeruddin M K, Grätzel M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2011, 133(45): 18042–18045
CrossRef Pubmed Google scholar
[29]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2: 591
CrossRef Google scholar
[30]
Chang J A, Rhee J H, Im S H, Lee Y H, Kim H J, Seok S I, Nazeeruddin M K, Grätzel M. High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Letters, 2010, 10(7): 2609–2612
CrossRef Pubmed Google scholar
[31]
Zhu R, Jiang C Y, Liu B, Ramakrishna S. Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye. Advanced Materials, 2009, 21(9): 994–1000
CrossRef Google scholar
[32]
Mor G K, Kim S, Paulose M, Varghese O K, Shankar K, Basham J, Grimes C A. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Letters, 2009, 9(12): 4250–4257
CrossRef Pubmed Google scholar
[33]
Moon S J, Baranoff E, Zakeeruddin S M, Yeh C Y, Diau E W G, Grätzel M, Sivula K. Enhanced light harvesting in mesoporous TiO2/P3HT hybrid solar cells using a porphyrin dye. Chemical Communications (Cambridge), 2011, 47: 8244–8246
[34]
Zhang W, Zhu R, Li F, Wang Q, Liu B. High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter. Journal of Physical Chemistry C, 2011, 115(14): 7038–7043
CrossRef Google scholar
[35]
Rong Y G, Li X, Ku Z L, Liu G H, Wang H, Xu M, Liu L F, Hu M, Xiang P, Zhou Z M, Shu T, Han H W. Monolithic all-solid-state dye-sensitized solar module based on mesoscopic carbon counter electrodes. Solar Energy Materials and Solar Cells, 2012, 105: 148–152
CrossRef Google scholar
[36]
Xu M, Liu G H, Li X, Wang H, Rong Y G, Ku Z L, Hu M, Yang Y, Liu L F, Liu T F, Chen J Z, Han H W. Efficient monolithic solid-state dye-sensitized solar cell with a low-cost mesoscopic carbon based screen printable counter electrode. Organic Electronics, 2013, 14(2): 628–634
CrossRef Google scholar
[37]
Dai S Y, Wang K J, Weng J, Sui Y F, Huang Y, Xiao S F, Chen S H, Hu L H, Kong F T, Pan X, Shi C W, Guo L. Design of DSC panel with efficiency more than 6%. Solar Energy Materials and Solar Cells, 2005, 85(3): 447–455
CrossRef Google scholar
[38]
Han L T, Fukui A, Chiba Y, Islam A, Komiya R, Fuke N, Koide N, Yamanaka R, Shimizu M. Integrated dye-sensitized solar cell module with conversion efficiency of 8.2%. Applied Physics Letters, 2009, 94(1): 013305-1–013305-3
CrossRef Google scholar
[39]
Meyer T, Martineau D, Azarn A, Meyer A. All screen printed dye solar cell. Organic Photovoltaics VIII, 2007, 6656: 65608-1–65608-11
[40]
Meyer T, Scott M, Azam A, Martineau D, Oswald F, Narbey S, Laporte G, Cisneros R, Tregnano G, Meyer A. CleanTechDay 3rd Generation Photovoltaics, CSEM, Basel, 18 August 2009
[41]
Pettersson H, Gruszecki T. Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods. Solar Energy Materials and Solar Cells, 2001, 70(2): 203–212
CrossRef Google scholar
[42]
Pettersson H, Gruszecki T, Johansson L H, Johander P. Manufacturing method for monolithic dye-sensitised solar cells permitting long-term stable low-power modules. Solar Energy Materials and Solar Cells, 2003, 77(4): 405–413
CrossRef Google scholar
[43]
Pettersson H, Gruszecki T, Schnetz C, Streit M, Xu Y H, Sun L C, Gorlov M, Kloo L, Boschloo G, Haggman L, Hagfeldt A. Parallel-connected monolithic dye-sensitised solar modules. Progress in Photovoltaics: Research and Applications, 2010, 18(5): 340–345
CrossRef Google scholar
[44]
Pettersson H, Gruszecki T, Bernhard R, Haggman L, Gorlov M, Boschloo G, Edvinsson T, Kloo L, Hagfeldt A. The monolithic multicell: a tool for testing material components in dye-sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2007, 15(2): 113–121
CrossRef Google scholar
[45]
Rong Y G, Han H W. Monolithic quasi-solid-state dye-sensitized solar cells based on graphene modified mesoscopic carbon-counter electrodes. Journal of Nanophotonics, 2013, 7(1): 073090
CrossRef Google scholar
[46]
Hinsch A, Kroon J M, Kern R, Uhlendorf I, Holzbock J, Meyer A, Ferber J. Long-term stability of dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications, 2001, 9(6): 425–438
CrossRef Google scholar

Acknowledgements

The authors acknowledge the financial support by the National High Technology Research and Development Program of China (863 Program, No. SS2013AA50303), the National Natural Science Foundation of China (Grant No. 61106056) and Scientific Research Foundation for Returned Scholars, Ministry of Education of China.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(888 KB)

Accesses

Citations

Detail

Sections
Recommended

/