
Lasing characteristics of curved semiconductor nanowires
Weisong YANG, Yipei WANG, Yaoguang MA, Chao MENG, Xiaoqin WU, Qing YANG
Front. Optoelectron. ›› 2013, Vol. 6 ›› Issue (4) : 448-451.
Lasing characteristics of curved semiconductor nanowires
The characteristics of curved semiconductor nanowire (NW) lasers were investigated. The red-shift in the laser spectra with increasing bending angles can be observed much more clearly than that in the photoluminescence (PL) spectra. Due to oscillation of light in resonant cavity, the bending loss of laser exhibits multiple times amplification of that of PL. Furthermore, an abnormal phenomenon of dominant peak switching is found in curved NWs when increasing the pump power, which has been first discovered and reported.
semiconductor nanowire / lasing characteristics / red-shift / bending loss / dominant peaks
Fig.3 (a) Output PL emissions spectra of straight and bent NW at the same pumping power, where C1 and C2 represent the curvature radius and C1>C2; (b) output laser emissions spectra of straight and bent NW; (c) plot of bending loss versus bending radius of PL and laser. Black exponential fitting line is for PL, and red one for laser |
Fig.4 (a) Pump power dependent spectra for a straight CdSe NW. S stands for short wavelength mode, M stands for middle wavelength mode and L for long wavelength mode; (b) intensities of three individual modes (S, M, L) versus pump power; (c) pump power dependent spectra for a curved NW, S′ stands for short wavelength mode, M′ stands for middle wavelength mode and L′ for long wavelength mode; (d) intensities of three individual modes (S′, M′, L′) versus pump power |
[1] |
Yan R X, Gargas D, Yang P D. Nanowire photonics. Nature Photonics, 2009, 3(10): 569-576
CrossRef
Google scholar
|
[2] |
Gradečak S, Qian F, Li Y, Park H G, Lieber C M. GaN nanowire lasers with low lasing thresholds. Applied Physics Letters, 2005, 87(17): 173111
CrossRef
Google scholar
|
[3] |
Song Y M, Xie Y, Malyarchuk V, Xiao J, Jung I, Choi K J, Liu Z, Park H, Lu C, Kim R H, Li R, Crozier K B, Huang Y, Rogers J A. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497(7447): 95-99
CrossRef
Pubmed
Google scholar
|
[4] |
Xu S, Qin Y, Xu C, Wei Y G, Yang R, Wang Z L. Self-powered nanowire devices. Nature Nanotechnology, 2010, 5(5): 366-373
CrossRef
Pubmed
Google scholar
|
[5] |
Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816-819
CrossRef
Pubmed
Google scholar
|
[6] |
Han X B, Kou L Z, Lang X L, Xia J B, Wang N, Qin R, Xu J, Liao Z M, Zhang X Z, Shan X D, Song X F, Gao J Y, Guo W L, Yu D P. Electronic and mechanical coupling in bent ZnO nanowires. Advanced Materials, 2009, 21(48): 4937-4941
CrossRef
Google scholar
|
[7] |
Yang W S, Ma Y G, Wang Y P, Meng C, Wu X Q, Ye Y, Dai L, Tong L M, Liu X, Yang Q. Bending effects on lasing action of semiconductor nanowires. Optics Express, 2013, 21(2): 2024-2031
CrossRef
Pubmed
Google scholar
|
[8] |
Ma C, Ding Y, Moore D, Wang X D, Wang Z L. Single-crystal CdSe nanosaws. Journal of American Chemical Society, 2004, 126(3): 708-709
CrossRef
Pubmed
Google scholar
|
[9] |
Demtroeder W. Laser Spectroscopy. 3rd ed. New York: Springer, 2003
|
[10] |
Li J, Meng C, Liu Y, Wu X, Lu Y, Ye Y, Dai L, Tong L, Liu X, Yang Q. Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process. Advanced Materials, 2013, 25(6): 833-837, 832
CrossRef
Pubmed
Google scholar
|
[11] |
Johnson J C, Choi H J, Knutsen K P, Schaller R D, Yang P, Saykally R J. Single gallium nitride nanowire lasers. Nature Materials, 2002, 1(2): 106-110
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |