Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics

Debin NI, Dong YANG, Shuying MA, Guoli TU, Jian ZHANG

PDF(470 KB)
PDF(470 KB)
Front. Optoelectron. ›› 2013, Vol. 6 ›› Issue (4) : 418-428. DOI: 10.1007/s12200-013-0343-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics

Author information +
History +

Abstract

Five 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based conjugated copolymers with controlled molecular weight were synthesized to explore their optical, energy level and photovoltaic properties. By tuning the positions of hexyl side chains on DTBT unit, the DTBT-fluorene copolymers exhibited very different aggregation properties, leading to 60 nm bathochromic shift in their absorptions and the corresponding power conversion efficiencies (PCEs) value of photovoltaic cells varied from 0.38%, 0.69% to 2.47%. Different copolymerization units, fluorene, carbazole and phenothiazine were also investigated. The polymer based on phenothiazine exhibited lower PCE value due to much lower molecular weight owing to its poor solubility, although phenothiazine units were expected to be a better electron donor. Compared with the fluorene-based polymer, the carbazole-DTBT copolymer showed higher short circuit current density (Jsc) and PCE value due to its better intermolecular stacking.

Keywords

4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT) / conjugated polymers / low-bandgap / organic photovoltaics

Cite this article

Download citation ▾
Debin NI, Dong YANG, Shuying MA, Guoli TU, Jian ZHANG. Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics. Front Optoelec, 2013, 6(4): 418‒428 https://doi.org/10.1007/s12200-013-0343-9

References

[1]
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791
CrossRef Google scholar
[2]
Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells. Advanced Functional Materials, 2001, 11(1): 15–26
CrossRef Google scholar
[3]
Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells. Chemistry of Materials, 2004, 16(23): 4533–4542
CrossRef Google scholar
[4]
Günes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells. Chemical Reviews, 2007, 107(4): 1324–1338
CrossRef Pubmed Google scholar
[5]
Ma W, Yang C, Gong X, Lee K, Heeger A J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials, 2005, 15(10): 1617–1622
CrossRef Google scholar
[6]
Reyes-Reyes M, Kim K, Carroll D L. High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61blends. Applied Physics Letters, 2005, 87(8): 083506–083508
CrossRef Google scholar
[7]
Qin R P, Li W W, Li C H, Du C, Veit C, Schleiermacher H F, Andersson M, Bo Z, Liu Z P, Inganäs O, Wuerfel U, Zhang F L. A planar copolymer for high efficiency polymer solar cells. Journal of the American Chemical Society, 2009, 131(41): 14612–14613
CrossRef Pubmed Google scholar
[8]
Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials, 2007, 6(7): 497–500
CrossRef Pubmed Google scholar
[9]
Thompson B C, Fréchet J M J. Polymer-fullerene composite solar cells. Angewandte Chemie International Edition, 2007, 47(1): 58–77
CrossRef Pubmed Google scholar
[10]
Kim Y, Cook S, Tuladhar S M, Choulis S A, Nelson J, Durrant J R, Bradley D D C, Giles M, McCulloch I, Ha C S, Ree M. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Materials, 2006, 5(3): 197–203
CrossRef Google scholar
[11]
Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4(11): 864–868
CrossRef Google scholar
[12]
Shi C J, Yao Y, Yang Y, Pei Q B. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. Journal of the American Chemical Society, 2006, 128(27): 8980–8986
CrossRef Pubmed Google scholar
[13]
Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin P G, Kim Y, Anthopoulos T D, Stavrinou P N, Bradley D D C, Nelson J. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nature Materials, 2008, 7(2): 158–164
CrossRef Pubmed Google scholar
[14]
Zhao G J, He Y J, Li Y F. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Advanced Materials, 2010, 22(39): 4355–4358
CrossRef Pubmed Google scholar
[15]
Chang C Y, Wu C E, Chen S Y, Cui C H, Cheng Y J, Hsu C S, Wang Y L, Li Y F. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angewandte Chemie International Edition, 2011, 50(40): 9386–9390
[16]
He F, Wang W, Chen W, Xu T, Darling S B, Strzalka J, Liu Y, Yu L P. Tetrathienoanthracene-based copolymers for efficient solar cells. Journal of the American Chemical Society, 2011, 133(10): 3284–3287
CrossRef Pubmed Google scholar
[17]
Piliego C, Holcombe T W, Douglas J D, Woo C H, Beaujuge P M, Fréchet J M J. Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. Journal of the American Chemical Society, 2010, 132(22): 7595–7597
CrossRef Pubmed Google scholar
[18]
Chen H Y, Hou J H, Zhang S Q, Liang Y Y, Yang G W, Yang Y, Yu L P, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 2009, 3(11): 649–653
CrossRef Google scholar
[19]
Price S C, Stuart A C, Yang L Q, Zhou H X, You W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. Journal of the American Chemical Society, 2011, 133(12): 4625–4631
CrossRef Pubmed Google scholar
[20]
Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007, 317(5835): 222–225
CrossRef Pubmed Google scholar
[21]
Wang E, Hou L T, Wang Z Q, Hellström S, Zhang F L, Inganäs O, Andersson M R. An easily synthesized blue polymer for high-performance polymer solar cells. Advanced Materials, 2010, 22(46): 5240–5244
CrossRef Pubmed Google scholar
[22]
Amb C M, Chen S, Graham K R, Subbiah J, Small C E, So F, Reynolds J R. Dithienogermole as a fused electron donor in bulk heterojunction solar cells. Journal of the American Chemical Society, 2011, 133(26): 10062–10065
CrossRef Pubmed Google scholar
[23]
Chang C Y, Wu C E, Chen S Y, Cui C H, Cheng Y J, Hsu C S, Wang Y L, Li Y F. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angewandte Chemie International Edition, 2011, 50(40): 9386–9390
CrossRef Pubmed Google scholar
[24]
Jin J K, Choi J K, Kim B J, Kang H B, Yoon S C, You H, Jung H T. Synthesis and photovoltaic performance of low-bandgap polymers on the basis of 9,9-dialkyl-3,6-dialkyloxysilafluorene. Macromolecules, 2011, 44(3): 502–511
CrossRef Google scholar
[25]
Peng Q, Liu X J, Su D, Fu G W, Xu J, Dai L M. Novel benzo[1,2-b:4,5-b’]dithiophene-benzothiadiazole derivatives with variable side chains for high-performance solar cells. Advanced Materials, 2011, 23(39): 4554–4558
CrossRef Pubmed Google scholar
[26]
Huo L J, Guo X, Zhang S Q, Li Y F, Hou J H. PBDTTTZ: a broad band gap conjugated polymer with high photovoltaic performance in polymer solar cells. Macromolecules, 2011, 44(11): 4035–4037
CrossRef Google scholar
[27]
Dou L T, You J B, Yang J, Chen C C, He Y J, Murase S, Moriarty T, Emery K, Li G, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6(3): 180–185
CrossRef Google scholar
[28]
Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics, 2012, 6(3): 153–161
CrossRef Google scholar
[29]
Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Advanced Materials, 2006, 18(6): 789–794
CrossRef Google scholar
[30]
Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletête M, Durocher G, Tao Y, Leclerc M. Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. Journal of the American Chemical Society, 2008, 130(2): 732–742
CrossRef Pubmed Google scholar
[31]
Huo L J, Hou J H, Chen H Y, Zhang S Q, Jiang Y, Chen T L, Yang Y. Bandgap and molecular level control of the low-bandgap polymers based on 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward highly efficient polymer solar cells. Macromolecules, 2009, 42(17): 6564–6571
CrossRef Google scholar
[32]
Liang Y Y, Feng D Q, Wu Y, Tsai S T, Li G, Ray C, Yu L P. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. Journal of the American Chemical Society, 2009, 131(22): 7792–7799
CrossRef Pubmed Google scholar
[33]
Zoombelt A P, Fonrodona M, Wienk M M, Sieval A B, Hummelen J C, Janssen R A J. Photovoltaic performance of an ultrasmall band gap polymer. Organic Letters, 2009, 11(4): 903–906
CrossRef Pubmed Google scholar
[34]
Mondal R, Ko S, Norton J E, Miyaki N, Becerril H A, Verploegen E, Toney M F, Bredas J L, McGehee M D, Bao Z N. Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering. Journal of Materials Chemistry, 2009, 19(39): 7195–7197
CrossRef Google scholar
[35]
Dhanabalan A, Van Duren J K J, Van Hal P A, Van Dongen J L J, Janssen R A J. Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Advanced Functional Materials, 2001, 11(4): 255–262
CrossRef Google scholar
[36]
Boudreault P L T, Michaud A, Leclerc M. A new poly(2,7-Dibenzosilole) derivative in polymer solar cells. Macromolecular Rapid Communications, 2007, 28(22): 2176–2179
CrossRef Google scholar
[37]
Song S, Jin Y, Kim S H, Moon J, Kim K, Kim J Y, Park S H, Lee K, Suh H. Stabilized polymers with novel indenoindene backbone against photodegradation for LEDs and solar cells. Macromolecules, 2008, 41(20): 7296–7305
CrossRef Google scholar
[38]
Moulé A J, Tsami A, Bünnagel T W, Forster M, Kronenberg N M, Scharber M, Koppe M, Morana M, Brabec C J, Meerholz K, Scherf U. Two novel cyclopentadithiophene-based alternating copolymers as potential donor components for high-efficiency bulk-heterojunction-type solar cells. Chemistry of Materials, 2008, 20(12): 4045–4050
CrossRef Google scholar
[39]
Liao L, Dai L M, Smith A, Durstock M, Lu J P, Ding J F, Tao Y. Photovoltaic-active dithienosilole-containing polymers. Macromolecules, 2007, 40(26): 9406–9412
CrossRef Google scholar
[40]
Zhou E, Nakamura M, Nishizawa T, Zhang Y, Wei Q S, Tajima K, Yang C H, Hashimoto K. Synthesis and photovoltaic properties of a novel low band gap polymer based on N-substituted dithieno[3,2-b:2′,3′-d]pyrrole. Macromolecules, 2008, 41(22): 8302–8305
CrossRef Google scholar
[41]
Wang M, Hu X W, Liu P, Li W, Gong X, Huang F, Cao Y. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. Journal of the American Chemical Society, 2011, 133(25): 9638–9641
CrossRef Pubmed Google scholar
[42]
Zhou H X, Yang L Q, Xiao S Q, Liu S B, You W. Donor-acceptor polymers incorporating alkylated dithienylbenzothiadiazole for bulk heterojunction solar cells: pronounced effect of positioning alkyl chains. Macromolecules, 2009, 43(2): 811–820
CrossRef Google scholar
[43]
Svensson M, Zhang F, Veenstra S C, Verhees W J H, Hummelen J C, Kroon J M, Inganäs O, Andersson M R. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Advanced Materials, 2003, 15(12): 988–991
CrossRef Google scholar
[44]
Inganäs O, Svensson M, Zhang F, Gadisa A, Persson N K, Wang X, Andersson M R. Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells. Applied Physics A, 2004, 79(1): 31–35
CrossRef Google scholar
[45]
Chen M H, Hou J H, Hong Z, Yang G W, Sista S, Chen L M, Yang Y. Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions. Advanced Materials, 2009, 21(42): 4238–4242
CrossRef Google scholar
[46]
Lee S K, Cho S, Tong M, Seo J H, Heeger A J. Effects of substituted side-chain position on donor–acceptor conjugated copolymers. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(8): 1821–1829
CrossRef Google scholar
[47]
Blouin N, Michaud A, Leclerc M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Advanced Materials, 2007, 19(17): 2295–2300
CrossRef Google scholar
[48]
Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics, 2009, 3(5): 297–302
CrossRef Google scholar
[49]
Kline R J, McGehee M D, Kadnikova E N, Liu J S, Fréchet J M J, Toney M F. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules, 2005, 38(8): 3312–3319
CrossRef Google scholar
[50]
Schilinsky P, Asawapirom U, Scherf U, Biele M, Brabec C J. Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. Chemistry of Materials, 2005, 17(8): 2175–2180
CrossRef Google scholar
[51]
Koppe M, Brabec C J, Heiml S, Schausberger A, Duffy W, Heeney M, McCulloch I. Influence of molecular weight distribution on the gelation of P3HT and its impact on the photovoltaic performance. Macromolecules, 2009, 42(13): 4661–4666
CrossRef Google scholar
[52]
Osaka I, Saito M, Mori H, Koganezawa T, Takimiya K. Drastic change of molecular orientation in a thiazolothiazole copolymer by molecular-weight control and blending with PC61BM leads to high efficiencies in solar cells. Advanced Materials, 2012, 24(3): 425–430
CrossRef Google scholar
[53]
Müller C, Wang E, Andersson L M, Tvingstedt K, Zhou Y, Andersson M R, Inganäs O. Influence of molecular weight on the performance of organic solar cells based on a fluorene derivative. Advanced Functional Materials, 2010, 20(13): 2124–2131
CrossRef Google scholar
[54]
Chu T Y, Alem S, Tsang S W, Tse S C, Wakim S, Lu J P, Dennler G, Waller D, Gaudiana R, Tao Y. Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance. Applied Physics Letters, 2011, 98(25): 253301–253303
CrossRef Google scholar
[55]
Admassie S, Inganäs O, Mammo W, Perzon E, Andersson M R. Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers. Synthetic Metals, 2006, 156(7–8): 614–623
CrossRef Google scholar
[56]
Koeckelberghs G, Cremer L D, Persoons A, Verbiest T. Influence of the substituent and polymerization methodology on the properties of chiral poly(dithieno[3,2-b:2′,3′-d]pyrrole)s. Macromolecules, 2007, 40(12): 4173–4181

Acknowledgements

Financial support by the National Natural Science Foundation of China (Grant Nos. 51073063 and 20904057) and Open Project of State Key Laboratory for Supramolecular Structure and Materials (No. SKLSSM201129) of Jilin university are gratefully acknowledged. J. Zhang thanks the support by 100 Talents Programme of the Chinese Academy of Science.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(470 KB)

Accesses

Citations

Detail

Sections
Recommended

/