Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics
Debin NI, Dong YANG, Shuying MA, Guoli TU, Jian ZHANG
Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics
Five 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based conjugated copolymers with controlled molecular weight were synthesized to explore their optical, energy level and photovoltaic properties. By tuning the positions of hexyl side chains on DTBT unit, the DTBT-fluorene copolymers exhibited very different aggregation properties, leading to 60 nm bathochromic shift in their absorptions and the corresponding power conversion efficiencies (PCEs) value of photovoltaic cells varied from 0.38%, 0.69% to 2.47%. Different copolymerization units, fluorene, carbazole and phenothiazine were also investigated. The polymer based on phenothiazine exhibited lower PCE value due to much lower molecular weight owing to its poor solubility, although phenothiazine units were expected to be a better electron donor. Compared with the fluorene-based polymer, the carbazole-DTBT copolymer showed higher short circuit current density (Jsc) and PCE value due to its better intermolecular stacking.
4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT) / conjugated polymers / low-bandgap / organic photovoltaics
[1] |
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791
CrossRef
Google scholar
|
[2] |
Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells. Advanced Functional Materials, 2001, 11(1): 15–26
CrossRef
Google scholar
|
[3] |
Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells. Chemistry of Materials, 2004, 16(23): 4533–4542
CrossRef
Google scholar
|
[4] |
Günes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells. Chemical Reviews, 2007, 107(4): 1324–1338
CrossRef
Pubmed
Google scholar
|
[5] |
Ma W, Yang C, Gong X, Lee K, Heeger A J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials, 2005, 15(10): 1617–1622
CrossRef
Google scholar
|
[6] |
Reyes-Reyes M, Kim K, Carroll D L. High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61blends. Applied Physics Letters, 2005, 87(8): 083506–083508
CrossRef
Google scholar
|
[7] |
Qin R P, Li W W, Li C H, Du C, Veit C, Schleiermacher H F, Andersson M, Bo Z, Liu Z P, Inganäs O, Wuerfel U, Zhang F L. A planar copolymer for high efficiency polymer solar cells. Journal of the American Chemical Society, 2009, 131(41): 14612–14613
CrossRef
Pubmed
Google scholar
|
[8] |
Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials, 2007, 6(7): 497–500
CrossRef
Pubmed
Google scholar
|
[9] |
Thompson B C, Fréchet J M J. Polymer-fullerene composite solar cells. Angewandte Chemie International Edition, 2007, 47(1): 58–77
CrossRef
Pubmed
Google scholar
|
[10] |
Kim Y, Cook S, Tuladhar S M, Choulis S A, Nelson J, Durrant J R, Bradley D D C, Giles M, McCulloch I, Ha C S, Ree M. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Materials, 2006, 5(3): 197–203
CrossRef
Google scholar
|
[11] |
Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4(11): 864–868
CrossRef
Google scholar
|
[12] |
Shi C J, Yao Y, Yang Y, Pei Q B. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. Journal of the American Chemical Society, 2006, 128(27): 8980–8986
CrossRef
Pubmed
Google scholar
|
[13] |
Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin P G, Kim Y, Anthopoulos T D, Stavrinou P N, Bradley D D C, Nelson J. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nature Materials, 2008, 7(2): 158–164
CrossRef
Pubmed
Google scholar
|
[14] |
Zhao G J, He Y J, Li Y F. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Advanced Materials, 2010, 22(39): 4355–4358
CrossRef
Pubmed
Google scholar
|
[15] |
Chang C Y, Wu C E, Chen S Y, Cui C H, Cheng Y J, Hsu C S, Wang Y L, Li Y F. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angewandte Chemie International Edition, 2011, 50(40): 9386–9390
|
[16] |
He F, Wang W, Chen W, Xu T, Darling S B, Strzalka J, Liu Y, Yu L P. Tetrathienoanthracene-based copolymers for efficient solar cells. Journal of the American Chemical Society, 2011, 133(10): 3284–3287
CrossRef
Pubmed
Google scholar
|
[17] |
Piliego C, Holcombe T W, Douglas J D, Woo C H, Beaujuge P M, Fréchet J M J. Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. Journal of the American Chemical Society, 2010, 132(22): 7595–7597
CrossRef
Pubmed
Google scholar
|
[18] |
Chen H Y, Hou J H, Zhang S Q, Liang Y Y, Yang G W, Yang Y, Yu L P, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 2009, 3(11): 649–653
CrossRef
Google scholar
|
[19] |
Price S C, Stuart A C, Yang L Q, Zhou H X, You W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. Journal of the American Chemical Society, 2011, 133(12): 4625–4631
CrossRef
Pubmed
Google scholar
|
[20] |
Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007, 317(5835): 222–225
CrossRef
Pubmed
Google scholar
|
[21] |
Wang E, Hou L T, Wang Z Q, Hellström S, Zhang F L, Inganäs O, Andersson M R. An easily synthesized blue polymer for high-performance polymer solar cells. Advanced Materials, 2010, 22(46): 5240–5244
CrossRef
Pubmed
Google scholar
|
[22] |
Amb C M, Chen S, Graham K R, Subbiah J, Small C E, So F, Reynolds J R. Dithienogermole as a fused electron donor in bulk heterojunction solar cells. Journal of the American Chemical Society, 2011, 133(26): 10062–10065
CrossRef
Pubmed
Google scholar
|
[23] |
Chang C Y, Wu C E, Chen S Y, Cui C H, Cheng Y J, Hsu C S, Wang Y L, Li Y F. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angewandte Chemie International Edition, 2011, 50(40): 9386–9390
CrossRef
Pubmed
Google scholar
|
[24] |
Jin J K, Choi J K, Kim B J, Kang H B, Yoon S C, You H, Jung H T. Synthesis and photovoltaic performance of low-bandgap polymers on the basis of 9,9-dialkyl-3,6-dialkyloxysilafluorene. Macromolecules, 2011, 44(3): 502–511
CrossRef
Google scholar
|
[25] |
Peng Q, Liu X J, Su D, Fu G W, Xu J, Dai L M. Novel benzo[1,2-b:4,5-b’]dithiophene-benzothiadiazole derivatives with variable side chains for high-performance solar cells. Advanced Materials, 2011, 23(39): 4554–4558
CrossRef
Pubmed
Google scholar
|
[26] |
Huo L J, Guo X, Zhang S Q, Li Y F, Hou J H. PBDTTTZ: a broad band gap conjugated polymer with high photovoltaic performance in polymer solar cells. Macromolecules, 2011, 44(11): 4035–4037
CrossRef
Google scholar
|
[27] |
Dou L T, You J B, Yang J, Chen C C, He Y J, Murase S, Moriarty T, Emery K, Li G, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6(3): 180–185
CrossRef
Google scholar
|
[28] |
Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics, 2012, 6(3): 153–161
CrossRef
Google scholar
|
[29] |
Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Advanced Materials, 2006, 18(6): 789–794
CrossRef
Google scholar
|
[30] |
Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletête M, Durocher G, Tao Y, Leclerc M. Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. Journal of the American Chemical Society, 2008, 130(2): 732–742
CrossRef
Pubmed
Google scholar
|
[31] |
Huo L J, Hou J H, Chen H Y, Zhang S Q, Jiang Y, Chen T L, Yang Y. Bandgap and molecular level control of the low-bandgap polymers based on 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward highly efficient polymer solar cells. Macromolecules, 2009, 42(17): 6564–6571
CrossRef
Google scholar
|
[32] |
Liang Y Y, Feng D Q, Wu Y, Tsai S T, Li G, Ray C, Yu L P. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. Journal of the American Chemical Society, 2009, 131(22): 7792–7799
CrossRef
Pubmed
Google scholar
|
[33] |
Zoombelt A P, Fonrodona M, Wienk M M, Sieval A B, Hummelen J C, Janssen R A J. Photovoltaic performance of an ultrasmall band gap polymer. Organic Letters, 2009, 11(4): 903–906
CrossRef
Pubmed
Google scholar
|
[34] |
Mondal R, Ko S, Norton J E, Miyaki N, Becerril H A, Verploegen E, Toney M F, Bredas J L, McGehee M D, Bao Z N. Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering. Journal of Materials Chemistry, 2009, 19(39): 7195–7197
CrossRef
Google scholar
|
[35] |
Dhanabalan A, Van Duren J K J, Van Hal P A, Van Dongen J L J, Janssen R A J. Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Advanced Functional Materials, 2001, 11(4): 255–262
CrossRef
Google scholar
|
[36] |
Boudreault P L T, Michaud A, Leclerc M. A new poly(2,7-Dibenzosilole) derivative in polymer solar cells. Macromolecular Rapid Communications, 2007, 28(22): 2176–2179
CrossRef
Google scholar
|
[37] |
Song S, Jin Y, Kim S H, Moon J, Kim K, Kim J Y, Park S H, Lee K, Suh H. Stabilized polymers with novel indenoindene backbone against photodegradation for LEDs and solar cells. Macromolecules, 2008, 41(20): 7296–7305
CrossRef
Google scholar
|
[38] |
Moulé A J, Tsami A, Bünnagel T W, Forster M, Kronenberg N M, Scharber M, Koppe M, Morana M, Brabec C J, Meerholz K, Scherf U. Two novel cyclopentadithiophene-based alternating copolymers as potential donor components for high-efficiency bulk-heterojunction-type solar cells. Chemistry of Materials, 2008, 20(12): 4045–4050
CrossRef
Google scholar
|
[39] |
Liao L, Dai L M, Smith A, Durstock M, Lu J P, Ding J F, Tao Y. Photovoltaic-active dithienosilole-containing polymers. Macromolecules, 2007, 40(26): 9406–9412
CrossRef
Google scholar
|
[40] |
Zhou E, Nakamura M, Nishizawa T, Zhang Y, Wei Q S, Tajima K, Yang C H, Hashimoto K. Synthesis and photovoltaic properties of a novel low band gap polymer based on N-substituted dithieno[3,2-b:2′,3′-d]pyrrole. Macromolecules, 2008, 41(22): 8302–8305
CrossRef
Google scholar
|
[41] |
Wang M, Hu X W, Liu P, Li W, Gong X, Huang F, Cao Y. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. Journal of the American Chemical Society, 2011, 133(25): 9638–9641
CrossRef
Pubmed
Google scholar
|
[42] |
Zhou H X, Yang L Q, Xiao S Q, Liu S B, You W. Donor-acceptor polymers incorporating alkylated dithienylbenzothiadiazole for bulk heterojunction solar cells: pronounced effect of positioning alkyl chains. Macromolecules, 2009, 43(2): 811–820
CrossRef
Google scholar
|
[43] |
Svensson M, Zhang F, Veenstra S C, Verhees W J H, Hummelen J C, Kroon J M, Inganäs O, Andersson M R. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Advanced Materials, 2003, 15(12): 988–991
CrossRef
Google scholar
|
[44] |
Inganäs O, Svensson M, Zhang F, Gadisa A, Persson N K, Wang X, Andersson M R. Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells. Applied Physics A, 2004, 79(1): 31–35
CrossRef
Google scholar
|
[45] |
Chen M H, Hou J H, Hong Z, Yang G W, Sista S, Chen L M, Yang Y. Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions. Advanced Materials, 2009, 21(42): 4238–4242
CrossRef
Google scholar
|
[46] |
Lee S K, Cho S, Tong M, Seo J H, Heeger A J. Effects of substituted side-chain position on donor–acceptor conjugated copolymers. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(8): 1821–1829
CrossRef
Google scholar
|
[47] |
Blouin N, Michaud A, Leclerc M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Advanced Materials, 2007, 19(17): 2295–2300
CrossRef
Google scholar
|
[48] |
Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics, 2009, 3(5): 297–302
CrossRef
Google scholar
|
[49] |
Kline R J, McGehee M D, Kadnikova E N, Liu J S, Fréchet J M J, Toney M F. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules, 2005, 38(8): 3312–3319
CrossRef
Google scholar
|
[50] |
Schilinsky P, Asawapirom U, Scherf U, Biele M, Brabec C J. Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. Chemistry of Materials, 2005, 17(8): 2175–2180
CrossRef
Google scholar
|
[51] |
Koppe M, Brabec C J, Heiml S, Schausberger A, Duffy W, Heeney M, McCulloch I. Influence of molecular weight distribution on the gelation of P3HT and its impact on the photovoltaic performance. Macromolecules, 2009, 42(13): 4661–4666
CrossRef
Google scholar
|
[52] |
Osaka I, Saito M, Mori H, Koganezawa T, Takimiya K. Drastic change of molecular orientation in a thiazolothiazole copolymer by molecular-weight control and blending with PC61BM leads to high efficiencies in solar cells. Advanced Materials, 2012, 24(3): 425–430
CrossRef
Google scholar
|
[53] |
Müller C, Wang E, Andersson L M, Tvingstedt K, Zhou Y, Andersson M R, Inganäs O. Influence of molecular weight on the performance of organic solar cells based on a fluorene derivative. Advanced Functional Materials, 2010, 20(13): 2124–2131
CrossRef
Google scholar
|
[54] |
Chu T Y, Alem S, Tsang S W, Tse S C, Wakim S, Lu J P, Dennler G, Waller D, Gaudiana R, Tao Y. Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance. Applied Physics Letters, 2011, 98(25): 253301–253303
CrossRef
Google scholar
|
[55] |
Admassie S, Inganäs O, Mammo W, Perzon E, Andersson M R. Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers. Synthetic Metals, 2006, 156(7–8): 614–623
CrossRef
Google scholar
|
[56] |
Koeckelberghs G, Cremer L D, Persoons A, Verbiest T. Influence of the substituent and polymerization methodology on the properties of chiral poly(dithieno[3,2-b:2′,3′-d]pyrrole)s. Macromolecules, 2007, 40(12): 4173–4181
|
/
〈 | 〉 |