Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n- to p-layers
Wu TIAN, Xiong HUI, Yang LI, Jiangnan DAI, Yanyan FANG, Zhihao WU, Changqing CHEN
Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n- to p-layers
The advantages of blue InGaN light-emitting diodes (LED) with the active region of gradually increased barrier heights from n- to p-layers are studied. The energy band diagram, hole concentration, electrostatic field near the electron blocking layer (EBL), and the internal quantum efficiency (IQE) are investigated by Crosslight simulation program. The simulation results show that the structure with gradually increased barrier heights has better performance over the equal one, which can be attributed to the mitigated polarization effect near the interface of the last barrier/EBL due to less interface polarization charges. Moreover, reduced barrier height toward the n-layers is beneficial for holes injection and transportation in the active region. As a result, holes are injected into the active region more efficiently and distributed uniformly in the quantum wells, with which both the IQE and the total lighting power are increased. Although it can lead to the broadening of the spontaneous emission spectrum, the increase is slight such that it has little effect on the application in solid-state lighting.
InGaN / light-emitting diodes (LED) / polarization effect / gradual barrier height
[1] |
Oh J H, Oh J R, Park H K, Sung Y G, Do Y R. New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs. Optics Express, 2011, 19(Suppl 3): A270-A279
CrossRef
Pubmed
Google scholar
|
[2] |
Li J, Lin J Y, Jiang H X. Growth of III-nitride photonic structures on large area silicon substrates. Applied Physics Letters, 2006, 88(17): 171909
CrossRef
Google scholar
|
[3] |
Liao C T, Tsai M C, Liou B T, Yen S H, Kuo Y K. Improvement in output power of a 460 nm InGaN light-emitting diode using staggered quantum well. Journal of Applied Physics, 2010, 108(6): 063107
CrossRef
Google scholar
|
[4] |
Gao H Y, Yan F W, ZhangY, Li J M, Zeng Y P, Wang G H. Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale. Journal of Applied Physics, 2008, 103(1): 014314
CrossRef
Google scholar
|
[5] |
Lee J H, Lee D Y, Oh B W, Lee J H. Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate. IEEE Transactions on Electron Devices, 2010, 57(1): 157-163
CrossRef
Google scholar
|
[6] |
Tansu N, Mawst L J. Current injection efficiency of InGaAsN quantum-well lasers. Journal of Applied Physics, 2005, 97(5): 054502
CrossRef
Google scholar
|
[7] |
Choi S, Ji M H, Kim J, Kim H J, Satter M M, Yoder P D, Ryou J H, Dupuis R D, Fischer A M, Ponce F A. Efficiency droop due to electron spill-over and limited hole injection in III-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers. Applied Physics Letters, 2012, 101(16): 161110
CrossRef
Google scholar
|
[8] |
Hori A, Yasunaga D, Satake A, Fujiwara K. Temperature and injection current dependence of electroluminescence intensity in green and blue InGaN single-quantum-well light-emitting diodes. Journal of Applied Physics, 2003, 93(6): 3152-3157
CrossRef
Google scholar
|
[9] |
Wang C H, Chang S P, Ku P H, Li J C, Lan Y P, Lin C C, Yang H C, Kuo H C, Lu T C, Wang S C, Chang C Y. Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers. Applied Physics Letters, 2011, 99(17): 171106
CrossRef
Google scholar
|
[10] |
Otsuji N, Fujiwara K, Sheu J K. Electroluminescence efficiency of blue InGaN/GaN quantum-well diodes with and without an n-InGaN electron reservoir layer. Journal of Applied Physics, 2006, 100(11): 113105
CrossRef
Google scholar
|
[11] |
Zhao H P, Liu G Y, Arif R A, Tansu N. Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes. Solid-State Electronics, 2010, 54(10): 1119-1124
CrossRef
Google scholar
|
[12] |
Zhao H P, Liu G Y, Zhang J, Arif R A, Tansu R. Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes. Journal of Display Technology, 2013, 9(4): 212-225
CrossRef
Google scholar
|
[13] |
Titkov I E, Sannikov D A, Park Y M, Son J K. Blue light emitting diode internal and injection efficiency. AIP Advances, 2012, 2(3): 032117
CrossRef
Google scholar
|
[14] |
Xu L F, Patel D, Menoni C S, Yeh J Y, Mawst L J, Tansu N. Experimental evidence of the impact of nitrogen on carrier capture and escape times in InGaAsN/GaAs single quantum well. IEEE Photonics Journal, 2012, 4(6): 2262-2271
CrossRef
Google scholar
|
[15] |
Tansu N, Mawst L J. The role of hole leakage in 1300-nm InGaAsN quantum-well lasers. Applied Physics Letters, 2003, 82(10): 1500-1502
CrossRef
Google scholar
|
[16] |
Chang J Y, Tsai M C, Kuo Y K. Advantages of blue InGaN light-emitting diodes with AlGaN barriers. Optics Letters, 2010, 35(9): 1368-1370
CrossRef
Pubmed
Google scholar
|
[17] |
Liu G Y, Zhang J, Tan C K, Tansu N. Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes. IEEE Photonics Journal, 2013, 5(2): 2201011
CrossRef
Google scholar
|
[18] |
Delaney K T, Rinke P, Van de Walle C G. Auger recombination rates in nitrides from first principles. Applied Physics Letters, 2009, 94(19): 191109
CrossRef
Google scholar
|
[19] |
Tan C K, Zhang J, Li X H, Liu G Y, Tayo B O, Tansu N. First-principle electronic properties of dilute-As GaNAs alloy for visible light emitters. Journal of Display Technology, 2013, 9(4): 272-279
CrossRef
Google scholar
|
[20] |
Kuo Y K, Chang J Y, Tsai M C. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer. Optics Letters, 2010, 35(19): 3285-3287
CrossRef
Pubmed
Google scholar
|
[21] |
Kuo Y K, Tsai M C, Yen S H. Numerical simulation of blue InGaN light-emitting diodes with polarization-matched AlGaInN electron-blocking layer and barrier layer. Optics Communications, 2009, 282(21): 4252-4255
CrossRef
Google scholar
|
[22] |
Zhang Y Y, Yin Y A. Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer. Applied Physics Letters, 2011, 99(22): 221103
CrossRef
Google scholar
|
[23] |
Vampola K J, Iza M, Keller S, DenBaars S P, Nakamura S. Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Applied Physics Letters, 2009, 94(6): 061116-1- 061116-3
CrossRef
Google scholar
|
[24] |
Liou B T, Tsai M C, Liao C T, Yen S H, Kuo Y K. Numerical investigation of blue InGaN light-emitting diodes with staggered quantum wells. Proceedings of the Society for Photo-Instrumentation Engineers, 2009, 7211: 72111D-1-72111D-8
CrossRef
Google scholar
|
[25] |
Jain S C, Willander M, Narayan J, Overstraeten R V. III-nitrides: growth, characterization, and properties. Journal of Applied Physics, 2000, 87(3): 965-1006
CrossRef
Google scholar
|
[26] |
Yen S H, Kuo Y K. Polarization-dependent optical characteristics of violet InGaN laser diodes. Journal of Applied Physics, 2008, 103(10): 103115-1-103115-6
CrossRef
Google scholar
|
[27] |
Kuo Y K, Yen S H, Wang Y W. Simulation of deep ultraviolet light-emitting diodes. Proceedings of the Society for Photo-Instrumentation Engineers, 2007, 6669: 66691J
|
[28] |
Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN hetero-structures. Journal of Applied Physics, 2000, 87(1): 334-344
CrossRef
Google scholar
|
[29] |
Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures. Applied Physics Letters, 2002, 80(7): 1204-1206
CrossRef
Google scholar
|
[30] |
Ridley B K, Schaff W J, Eastman L F. Theoretical model for polarization superlattices: Energy levels and intersubband transitions. Journal of Applied Physics, 2003, 94(6): 3972-3978
CrossRef
Google scholar
|
[31] |
Vurgaftman I, Meyer J R. Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics, 2003, 94(6): 3675-3696
CrossRef
Google scholar
|
[32] |
Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics, 2001, 89(11): 5815-5875
CrossRef
Google scholar
|
[33] |
Chichibu S F, Abare A C, Minsky M S, Keller S, Fleischer S B, Bowers J E, Hu E, Mishra U K, Coldren L A, DenBaars S P, Sota T. Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures. Applied Physics Letters, 1998, 73(14): 2006-2008
CrossRef
Google scholar
|
[34] |
Feezell D F, Speck J S, DenBaars S P, Nakamura S. Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting. Journal of Display Technology, 2013, 9(4): 190-198
CrossRef
Google scholar
|
[35] |
Farrell R M, Haeger D A, Fujito K, DenBaars S P, Nakamura S, Speck J S. Morphological evolution of InGaN/GaN light-emitting diodes grown on free-standing m-plane GaN substrates. Journal of Applied Physics, 2013, 113(6): 063504
CrossRef
Google scholar
|
[36] |
Zhang J, Tansu N. Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates. IEEE Photonics Journal, 2013, 5(2): 2600111
CrossRef
Google scholar
|
[37] |
Zhao H P, Liu G Y, Zhang J, Poplawsky J D, Dierolf V, Tansu N. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Optics Express, 2011, 19(Suppl 4): A991-A1007
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |