SAGCM avalanche photodiode with additional layer and nonuniform electric field
Abbas GHADIMI, Vahid AHMADI, Fatemeh SHAHSHAHANI
SAGCM avalanche photodiode with additional layer and nonuniform electric field
This paper presents a new method to increase the speed of the separated absorption, grading, charge, and multiplication avalanche photodiode (SAGCM-APD). This improvement is obtained by adding a new thin charge layer between absorption and grading layers, with assuming the non-uniform electric field in different regions of the structure. In addition, a circuit model of the proposed structure is extracted, using carrier rate equations. Also, to achieve the optimum structure, it is tried to have trade-offs among thickness of the layers and have proper tuning of physical parameters. Eventually, frequency and transient response are investigated and it is shown that, in comparison with the previous conventional structure, significant improvements in gain-bandwidth product, speed and also in breakdown voltage are attained.
separated absorption grading charge multiplication avalanche photodiode (SAGCM-APD) / electric field nonuniformity / additional charge layer
[1] |
Campbell J C. Recent advances in telecommunications avalanche photodiodes. Journal of Lightwave Technology, 2007, 25(1): 109–121
CrossRef
Google scholar
|
[2] |
Kasper B L, Campbell J C. Multigigbit-per-second avalanche photodiode lightwave receivers. Journal of Lightwave Technology, 1987, 5(10): 1351–1364
CrossRef
Google scholar
|
[3] |
Tarof L E, Yu J, Bruce R, Knight D G, Baird T, Oosterbrink B. High-frequency performance of separate absorption and multiplication InP/InGaAs avalanche photodiodes. IEEE Photonics Technology Letters, 1993, 5(6): 672–674
CrossRef
Google scholar
|
[4] |
Masudy-Panah S, Moravvej-Farshi M K, Jalali M. Temperature dependent characteristics of submicron GaAs avalanche photodiodes obtained by a nonlocal analysis. Journal of Optical Communications and Networking, 2009, 282(17): 3630–3636
CrossRef
Google scholar
|
[5] |
Liew S C, Tan C H, Goh Y L, Marshall A R J, David J P R. Modeling of avalanche multiplication and excess noise factor in In0.52Al0.48As avalanche photodiodes using a simple Monte Carlo model. Journal of Applied Physics, 2008, 104(19): 13114–13119
|
[6] |
Banoushi A, Ahmadi V, Setayeshi S. An analytical approach to study the effect of carrier velocities on the gain and breakdown voltage of avalanche photodiodes. Journal of Lightwave Technology, 2002, 20(4): 696–699
CrossRef
Google scholar
|
[7] |
Ng B K, David J P R, Plimmer S A, Rees G J, Tozer R C, Hopkinson M, Hill G. Avalanche multiplication characteristics of Al0.8 Ga0.2 As diodes. IEEE Transactions on Electron Devices, 2001, 48(10): 2198–2204
CrossRef
Google scholar
|
[8] |
Bandyopadhyay A, Deen M J, Tarof L E, Clark W A. Simplified approaches to time-domain modeling of avalanche photodiodes. IEEE Journal of Quantum Electronics, 1998, 34(4): 691–699
CrossRef
Google scholar
|
[9] |
Chen W, Liu S. PIN avalanche photodiodes model for circuit simulation. IEEE Journal of Quantum Electronics, 1998, 32(12): 2105–2111
CrossRef
Google scholar
|
[10] |
El-Batawy Y M, Deen M J. Modeling and optimization of resonant cavity enhanced-separated absorption graded charge multiplication-avalanche photodetector (RCE-SAGCM-APD). IEEE Transactions on Electron Devices, 2003, 50(3): 790–801
CrossRef
Google scholar
|
[11] |
El-Batawy Y M, Deen M J. Analysis and circuit modeling of waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACM-APD). IEEE Transactions on Electron Devices, 2005, 52(3): 335–344
CrossRef
Google scholar
|
[12] |
Banoushi A, Kardan M R, Naeini M A. A circuit model for separate absorption, grading, charge, and multiplication avalanche photodiodes. Solid-State Electronics, 2005, 49(6): 871–877
CrossRef
Google scholar
|
[13] |
Mai Y X, Wang G. Equivalent circuit modeling of separate absorption grading charge multiplication avalanche photodiode. Journal of Lightwave Technology, 2009, 27(9): 1197–1202
CrossRef
Google scholar
|
[14] |
Wang G, Wu J. A novel equivalent circuit model for separate absorption grading charge multiplication avalanche photodiode (APD)-based optical receiver. Journal of Lightwave Technology, 2010, 28(5): 784–790
CrossRef
Google scholar
|
[15] |
Zhao Y L, Mo Q Y. An equivalent circuit model for separate absorption grading charge multiplication avalanche photodiode. Journal of Physics: Conference Series, 2011, 276(1): 012107 β
CrossRef
Google scholar
|
[16] |
Plimmer S A, Tan C H, David J P R, Grey R, Li K F, Rees G J. The effect of an electric-field gradient on avalanche noise. Applied Physics Letters, 1999, 75(19): 2963–2965
CrossRef
Google scholar
|
[17] |
Saleh M A, Hayat M M, Sotirelis P P, Holmes A L, Campbell J C, Saleh B E A, Teich M C. Impact-ionization and noise characteristics of thin III-V avalanche photodiodes. IEEE Transactions on Electron Devices, 2001, 48(12): 2722–2731
CrossRef
Google scholar
|
[18] |
Goh Y L, Massey D J, Marshall A R J, Ng J S, Tan C H, Ng W K, Rees G J, Hopkinson M, David J P R, Jones S K. Avalanche multiplication in InAlAs. IEEE Transactions on Electron Devices, 2007, 54(1): 11–16
CrossRef
Google scholar
|
[19] |
Masudy-Panah S, Ahmadi V. A closed form analytic model to study the characteristics of avalanche photodiodes. Journal of Modern Optics, 2009, 56(1): 67–72
CrossRef
Google scholar
|
[20] |
Kim D S, Lee S Y, Lee J H, Oh G S, Kim N J, Lee J W, Kim A S, Sin Y K. Fabrication of planar InP/InGaAs avalanche photodiode without guard rings. In: Proceedings of IEEE Lasers and Electro-Optics Society, Annual Meeting (LEOS 96). 1996, 332–333
|
[21] |
Tan L J J, Ng J S, Tan C H, David J P R. Avalanche noise characteristics in submicron InP diodes. IEEE Journal of Quantum Electronics, 2008, 44(4): 378–382
CrossRef
Google scholar
|
[22] |
Tarof L E, Knight D G, Fox K E, Miner C J, Puetz N, Kim H B. Planar InP/InGaAs avalanche photodetectors with a partial charge sheet in device periphery. Applied Physics Letters, 1990, 57(7): 670–672
CrossRef
Google scholar
|
/
〈 | 〉 |