Signal generation and processing at 100 Gb/s based on optical time division multiplexing
Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU
Signal generation and processing at 100 Gb/s based on optical time division multiplexing
In this paper, we review our recent works in 100 Gb/s signal generation and processing. A high-speed 100 Gb/s system with on-off keying (OOK) modulation format is implemented by using optical time division multiplexing (OTDM) method. As modifications of this system, simultaneous multicolor optical signal generation and 100 Gb/s return-to-zero (RZ)-to-non-return-to-zero (NRZ) format conversion are presented. We also demonstrate basic all-optical signal processing functions of 100 GHz clock recovery and 100 Gb/s all-optical 2R generation based on semiconductor optical amplifiers (SOAs).
optical time division multiplexing (OTDM) / 2R regeneration / clock recovery / semiconductor optical amplifier (SOA)
[1] |
Li J, Schubert C, Derksen R H, Makon R E, Hurm V, Djupsjöbacka A, Chacinski M, Westergren U, Bach H G, Mekonnen G G, Steffan A G, Driad R, Walcher H, Rosenzweig J. 112 Gb/s field trial of complete ETDM system based on monolithically integrated transmitter & receiver modules for use in 100 GbE. In: Proceedings of 36th European Conference on Optical Communication (ECOC). 2010, P4.03
|
[2] |
Roberts K, O'Sullivan M, Wu K T, Sun H, Awadalla A, Krause D J, Laperle C. Performance of dual-polarization QPSK for optical transport systems. Journal of Lightwave Technology, 2009, 27(16): 3546–3559
CrossRef
Google scholar
|
[3] |
Idler W, Lach E, Junginger B, Kuebart W, Schuh K, Klekamp A, Werner D, Steffan A G, Schippel A, Schneiders M, Vorbeck S, Braun R. WDM field trial over 764 km SSMF with 16 ´ 112 Gb/s NRZ-DQPSK co-propagating with 10.7 Gb/s NRZ. In: Proceedings of 36th European Conference on Optical Communication (ECOC). 2010, We.8.C.5
|
[4] |
Feiste U, Ludwig R, Schubert C, Berger J, Schmidt C, Weber H G, Schmauss B, Munk A, Buchold B, Briggmann D, Kueppers F, Rumpf F. 160 Gbit/s transmission over 116 km field-installed fibre using 160 Gbit/s OTDM and 40 Gbit/s ETDM. Electronics Letters, 2001, 37(7): 443–445
CrossRef
Google scholar
|
[5] |
Mulvd H C H, Tangdiongga E, Raz O, Herrera J, de Waardt H, Dorren H J S. 640 Gbit/s OTDM lab-transmission and 320 Gbit/s field-transmission with SOA-based clock recovery. In: Proceeding of Optical Fiber Communication Conference, OFC 2008. 2008, OWS2
|
[6] |
Nakazawa M, Yamamoto T, Tamura K R. 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator. Electronics Letters, 2000, 36(24): 2027–2029
CrossRef
Google scholar
|
[7] |
Galili M, Mulvad H C H, Oxenlowe L K, Hu H, Palushani E, Clausen A T, Jeppesen P. Generation and detection of 2.56 Tbit/s OTDM data using DPSK and polarisation multiplexing. In: Proceeding of Optical Fiber Communication Conference, OFC 2010. 2010, OThV2
|
[8] |
Mulvad H C H, Galili M, Oxenløwe L K, Hu H, Clausen A T, Jensen J B, Peucheret C, Jeppesen P. Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. Optics Express, 2010, 18(2): 1438–1443
CrossRef
Google scholar
|
[9] |
Wang J, Huang H, Wang X, Yang J Y, Willner A E. Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF. Optics Express, 2011, 19(19): 18246–18252
CrossRef
Pubmed
Google scholar
|
[10] |
Bogoni A, Wu X, Nuccio S R, Willner A E. 640 Gb/s all-optical regenerator based on a periodically poled lithium niobate waveguide. Journal of Lightwave Technology, 2012, 30(12): 1829–1834
CrossRef
Google scholar
|
[11] |
Ji H, Galili M, Hu H, Pu M H, Oxenløwe L K, Yvind K, Hvam J M, Jeppesen P. 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photonics Technology Letters, 2010, 22(23): 1762–1764
CrossRef
Google scholar
|
[12] |
Van E, Luan F, Van Erps J Ü, Luan F, Pelusi M D, Iredale T, Madden S, Choi D Y, Bulla D A, Luther-Davies B, Thienpont H, Eggleton B J. High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides. Journal of Lightwave Technology, 2010, 28(2): 209–215
CrossRef
Google scholar
|
[13] |
Kim S, Kim J H, Yu B G, Byun Y T, Jeon Y M, Lee S, Woo D H, Kim S H. All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electronics Letters, 2005, 41(18): 1027–1028
CrossRef
Google scholar
|
[14] |
Huo L, Yang Y F, Nan Y B, Lou C Y, Gao Y Z. A study on the wavelength conversion and all-optical 3R regeneration using cross-absorption modulation in a bulk electroabsorption modulator. Journal of Lightwave Technology, 2006, 24(8): 3035–3044
CrossRef
Google scholar
|
[15] |
Zhou E, Ohman F, Cheng C, Zhang X, Hong W, Mørk J, Huang D. Reduction of patterning effects in SOA-based wavelength converters by combining cross-gain and cross-absorption modulation. Opt Exp, 2008, 16(26): 21522–21528
CrossRef
Pubmed
Google scholar
|
[16] |
Singh S, Lovkesh. Ultrahigh speed optical processing logic based on an SOA-MZI. IEEE Journal on Selected Topics in Quantum Electronics, 2012, 18(2): 970–977
CrossRef
Google scholar
|
[17] |
Yang X, Manning R, Hu W. Simple 40 Gbit/s all-optical XOR gate. Electronics Letters, 2010, 46(3): 222
CrossRef
Google scholar
|
[18] |
Liu Y, Herrera J, Raz O, Tangdiongga E, Ramos F, Marti J, de Waardt H, Koonen A M J, Khoe G D, Dorren H J S. 160 Gbit/s all-optical SOA-based wavelength conversion and error-free transmission through two 50 km fibre links. Electronics Letters, 2007, 43(25): 1447–1449
CrossRef
Google scholar
|
[19] |
Liu Y, Tangdiongga E, Li Z, de Waardt H, Koonen A M J, Khoe G D, Shu X, Bennion I, Dorren H J S. Errior-free 320-Gb/s all-omtical wavelength conversion using a single semiconductor optical amplifier. Journal of Lightwave Technology, 2007, 25(1): 103–108
CrossRef
Google scholar
|
[20] |
Matsuura M, Raz O, Gomez-Agis F, Calabretta N, Dorren H J S. Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier. Optics Express, 2011, 19(26): 551–559
|
[21] |
Cleary C S, Power M J, Schneider S, Webb R P, Manning R J. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA. Optics Express, 2010, 18(25): 25726–25737
CrossRef
Pubmed
Google scholar
|
[22] |
Chen J, Lou C, Huo L, Lu D. 1.4 ps pedestal-free low timing jitter 10 GHz pulse source using commercial cascaded LiNbO3 modulators and fiber-based compressor. Applied Optics, 2011, 50(14): 1979–1983
CrossRef
Pubmed
Google scholar
|
[23] |
Yang Y F, Lou C Y, Gao Y Z. Novel ultrashort pulse source for measuring the transmission window in an electroabsorption modulator. Optical Engineering, 2007, 46(5): 055004
CrossRef
Google scholar
|
[24] |
Huo L, Lou C Y, Gao Y Z. Generation of 10 GHz 2 ps short laser pulses using an electroabsorption modulator and two-stage compression. Chinese Physics Letters, 2005, 22(2): 353–356
CrossRef
Google scholar
|
[25] |
Huo L, Dong Y, Lou C Y, Gao Y Z. Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation. IEEE Photonics Technology Letters, 2003, 15(7): 981–983
CrossRef
Google scholar
|
[26] |
Hu H, Yu J L, Zhang L T, Zhang A X, Wang W R, Wang J, Jiang Y, Yang E Z. 40-Gb/s all-optical serial-to-parallel conversion based on a single SOA. IEEE Photonics Technology Letters, 2008, 20(13): 1181–1183
CrossRef
Google scholar
|
[27] |
Wang T, Lou C Y, Huo L, Wang Z X, Gao Y Z. A simple method for clock recovery. Optics & Laser Technology, 2004, 36(8): 613–616
|
[28] |
Contestabile G, D’Errico A, Presi M, Ciaramella E. 40-GHz all-optical clock extraction using a semiconductor-assisted Fabry-Perot filter. IEEE Photonics Technology Letters, 2004, 16(11): 2523–2525
CrossRef
Google scholar
|
[29] |
Kim I, Kim C, Li G F, LiKamWa P, Hong J. 180-GHz clock recovery using a multisection gain-coupled distributed feedback laser. IEEE Photonics Technology Letters, 2005, 17(6): 1295–1297
CrossRef
Google scholar
|
[30] |
Costa e Silva M, Lagrost A, Bramerie L, Gay M, Besnard P, Joindot M, Simon J C, Shen A, Duan G H. Up to 425 GHz all optical frequency down-conversion clock recovery based on quantum dash Fabry-Perot mode-locked laser. In: Proceeding of Optical Fiber Communication Conference, OFC 2010. 2010, PDPC4
|
[31] |
Contestabile G, Proietti R, Calabretta N, Ciaramella E. Cross-gain compression in semiconductor optical amplifiers. Journal of Lightwave Technology, 2007, 25(3): 915–921
CrossRef
Google scholar
|
[32] |
Contestabile G, Proietti R, Presi M, Ciaramella E. 40 Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals. In: Proceeding of Optical Fiber Communication Conference, OFC 2008. 2008, 2774–2776
|
[33] |
Dong J J, Fu S N, Zhang X L, Shum P, Zhang L R, Huang D X. Analytical solution for SOA-based all-optical wavelength conversion using transient cross-phase modulation. IEEE Photonics Technology Letters, 2006, 18(24): 2554–2556
CrossRef
Google scholar
|
/
〈 | 〉 |