Signal generation and processing at 100 Gb/s based on optical time division multiplexing

Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU

PDF(852 KB)
PDF(852 KB)
Front. Optoelectron. ›› 2013, Vol. 6 ›› Issue (1) : 57-66. DOI: 10.1007/s12200-012-0304-8
REVIEW ARTICLE
REVIEW ARTICLE

Signal generation and processing at 100 Gb/s based on optical time division multiplexing

Author information +
History +

Abstract

In this paper, we review our recent works in 100 Gb/s signal generation and processing. A high-speed 100 Gb/s system with on-off keying (OOK) modulation format is implemented by using optical time division multiplexing (OTDM) method. As modifications of this system, simultaneous multicolor optical signal generation and 100 Gb/s return-to-zero (RZ)-to-non-return-to-zero (NRZ) format conversion are presented. We also demonstrate basic all-optical signal processing functions of 100 GHz clock recovery and 100 Gb/s all-optical 2R generation based on semiconductor optical amplifiers (SOAs).

Keywords

optical time division multiplexing (OTDM) / 2R regeneration / clock recovery / semiconductor optical amplifier (SOA)

Cite this article

Download citation ▾
Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing. Front Optoelec, 2013, 6(1): 57‒66 https://doi.org/10.1007/s12200-012-0304-8

References

[1]
Li J, Schubert C, Derksen R H, Makon R E, Hurm V, Djupsjöbacka A, Chacinski M, Westergren U, Bach H G, Mekonnen G G, Steffan A G, Driad R, Walcher H, Rosenzweig J. 112 Gb/s field trial of complete ETDM system based on monolithically integrated transmitter & receiver modules for use in 100 GbE. In: Proceedings of 36th European Conference on Optical Communication (ECOC). 2010, P4.03
[2]
Roberts K, O'Sullivan M, Wu K T, Sun H, Awadalla A, Krause D J, Laperle C. Performance of dual-polarization QPSK for optical transport systems. Journal of Lightwave Technology, 2009, 27(16): 3546–3559
CrossRef Google scholar
[3]
Idler W, Lach E, Junginger B, Kuebart W, Schuh K, Klekamp A, Werner D, Steffan A G, Schippel A, Schneiders M, Vorbeck S, Braun R. WDM field trial over 764 km SSMF with 16 ´ 112 Gb/s NRZ-DQPSK co-propagating with 10.7 Gb/s NRZ. In: Proceedings of 36th European Conference on Optical Communication (ECOC). 2010, We.8.C.5
[4]
Feiste U, Ludwig R, Schubert C, Berger J, Schmidt C, Weber H G, Schmauss B, Munk A, Buchold B, Briggmann D, Kueppers F, Rumpf F. 160 Gbit/s transmission over 116 km field-installed fibre using 160 Gbit/s OTDM and 40 Gbit/s ETDM. Electronics Letters, 2001, 37(7): 443–445
CrossRef Google scholar
[5]
Mulvd H C H, Tangdiongga E, Raz O, Herrera J, de Waardt H, Dorren H J S. 640 Gbit/s OTDM lab-transmission and 320 Gbit/s field-transmission with SOA-based clock recovery. In: Proceeding of Optical Fiber Communication Conference, OFC 2008. 2008, OWS2
[6]
Nakazawa M, Yamamoto T, Tamura K R. 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator. Electronics Letters, 2000, 36(24): 2027–2029
CrossRef Google scholar
[7]
Galili M, Mulvad H C H, Oxenlowe L K, Hu H, Palushani E, Clausen A T, Jeppesen P. Generation and detection of 2.56 Tbit/s OTDM data using DPSK and polarisation multiplexing. In: Proceeding of Optical Fiber Communication Conference, OFC 2010. 2010, OThV2
[8]
Mulvad H C H, Galili M, Oxenløwe L K, Hu H, Clausen A T, Jensen J B, Peucheret C, Jeppesen P. Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. Optics Express, 2010, 18(2): 1438–1443
CrossRef Google scholar
[9]
Wang J, Huang H, Wang X, Yang J Y, Willner A E. Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF. Optics Express, 2011, 19(19): 18246–18252
CrossRef Pubmed Google scholar
[10]
Bogoni A, Wu X, Nuccio S R, Willner A E. 640 Gb/s all-optical regenerator based on a periodically poled lithium niobate waveguide. Journal of Lightwave Technology, 2012, 30(12): 1829–1834
CrossRef Google scholar
[11]
Ji H, Galili M, Hu H, Pu M H, Oxenløwe L K, Yvind K, Hvam J M, Jeppesen P. 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photonics Technology Letters, 2010, 22(23): 1762–1764
CrossRef Google scholar
[12]
Van E, Luan F, Van Erps J Ü, Luan F, Pelusi M D, Iredale T, Madden S, Choi D Y, Bulla D A, Luther-Davies B, Thienpont H, Eggleton B J. High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides. Journal of Lightwave Technology, 2010, 28(2): 209–215
CrossRef Google scholar
[13]
Kim S, Kim J H, Yu B G, Byun Y T, Jeon Y M, Lee S, Woo D H, Kim S H. All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electronics Letters, 2005, 41(18): 1027–1028
CrossRef Google scholar
[14]
Huo L, Yang Y F, Nan Y B, Lou C Y, Gao Y Z. A study on the wavelength conversion and all-optical 3R regeneration using cross-absorption modulation in a bulk electroabsorption modulator. Journal of Lightwave Technology, 2006, 24(8): 3035–3044
CrossRef Google scholar
[15]
Zhou E, Ohman F, Cheng C, Zhang X, Hong W, Mørk J, Huang D. Reduction of patterning effects in SOA-based wavelength converters by combining cross-gain and cross-absorption modulation. Opt Exp, 2008, 16(26): 21522–21528
CrossRef Pubmed Google scholar
[16]
Singh S, Lovkesh. Ultrahigh speed optical processing logic based on an SOA-MZI. IEEE Journal on Selected Topics in Quantum Electronics, 2012, 18(2): 970–977
CrossRef Google scholar
[17]
Yang X, Manning R, Hu W. Simple 40 Gbit/s all-optical XOR gate. Electronics Letters, 2010, 46(3): 222
CrossRef Google scholar
[18]
Liu Y, Herrera J, Raz O, Tangdiongga E, Ramos F, Marti J, de Waardt H, Koonen A M J, Khoe G D, Dorren H J S. 160 Gbit/s all-optical SOA-based wavelength conversion and error-free transmission through two 50 km fibre links. Electronics Letters, 2007, 43(25): 1447–1449
CrossRef Google scholar
[19]
Liu Y, Tangdiongga E, Li Z, de Waardt H, Koonen A M J, Khoe G D, Shu X, Bennion I, Dorren H J S. Errior-free 320-Gb/s all-omtical wavelength conversion using a single semiconductor optical amplifier. Journal of Lightwave Technology, 2007, 25(1): 103–108
CrossRef Google scholar
[20]
Matsuura M, Raz O, Gomez-Agis F, Calabretta N, Dorren H J S. Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier. Optics Express, 2011, 19(26): 551–559
[21]
Cleary C S, Power M J, Schneider S, Webb R P, Manning R J. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA. Optics Express, 2010, 18(25): 25726–25737
CrossRef Pubmed Google scholar
[22]
Chen J, Lou C, Huo L, Lu D. 1.4 ps pedestal-free low timing jitter 10 GHz pulse source using commercial cascaded LiNbO3 modulators and fiber-based compressor. Applied Optics, 2011, 50(14): 1979–1983
CrossRef Pubmed Google scholar
[23]
Yang Y F, Lou C Y, Gao Y Z. Novel ultrashort pulse source for measuring the transmission window in an electroabsorption modulator. Optical Engineering, 2007, 46(5): 055004
CrossRef Google scholar
[24]
Huo L, Lou C Y, Gao Y Z. Generation of 10 GHz 2 ps short laser pulses using an electroabsorption modulator and two-stage compression. Chinese Physics Letters, 2005, 22(2): 353–356
CrossRef Google scholar
[25]
Huo L, Dong Y, Lou C Y, Gao Y Z. Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation. IEEE Photonics Technology Letters, 2003, 15(7): 981–983
CrossRef Google scholar
[26]
Hu H, Yu J L, Zhang L T, Zhang A X, Wang W R, Wang J, Jiang Y, Yang E Z. 40-Gb/s all-optical serial-to-parallel conversion based on a single SOA. IEEE Photonics Technology Letters, 2008, 20(13): 1181–1183
CrossRef Google scholar
[27]
Wang T, Lou C Y, Huo L, Wang Z X, Gao Y Z. A simple method for clock recovery. Optics & Laser Technology, 2004, 36(8): 613–616
[28]
Contestabile G, D’Errico A, Presi M, Ciaramella E. 40-GHz all-optical clock extraction using a semiconductor-assisted Fabry-Perot filter. IEEE Photonics Technology Letters, 2004, 16(11): 2523–2525
CrossRef Google scholar
[29]
Kim I, Kim C, Li G F, LiKamWa P, Hong J. 180-GHz clock recovery using a multisection gain-coupled distributed feedback laser. IEEE Photonics Technology Letters, 2005, 17(6): 1295–1297
CrossRef Google scholar
[30]
Costa e Silva M, Lagrost A, Bramerie L, Gay M, Besnard P, Joindot M, Simon J C, Shen A, Duan G H. Up to 425 GHz all optical frequency down-conversion clock recovery based on quantum dash Fabry-Perot mode-locked laser. In: Proceeding of Optical Fiber Communication Conference, OFC 2010. 2010, PDPC4
[31]
Contestabile G, Proietti R, Calabretta N, Ciaramella E. Cross-gain compression in semiconductor optical amplifiers. Journal of Lightwave Technology, 2007, 25(3): 915–921
CrossRef Google scholar
[32]
Contestabile G, Proietti R, Presi M, Ciaramella E. 40 Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals. In: Proceeding of Optical Fiber Communication Conference, OFC 2008. 2008, 2774–2776
[33]
Dong J J, Fu S N, Zhang X L, Shum P, Zhang L R, Huang D X. Analytical solution for SOA-based all-optical wavelength conversion using transient cross-phase modulation. IEEE Photonics Technology Letters, 2006, 18(24): 2554–2556
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61077055 and 61275032), Major State Basic Research Development Program of China (No. 2011CB301703), and Foundation for the Excellent Doctoral Dissertation of Beijing (No. YB20091000301).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(852 KB)

Accesses

Citations

Detail

Sections
Recommended

/