Photonic crystal fibers, devices, and applications

Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG

PDF(1824 KB)
PDF(1824 KB)
Front. Optoelectron. ›› 2013, Vol. 6 ›› Issue (1) : 3-24. DOI: 10.1007/s12200-012-0301-y
REVIEW ARTICLE
REVIEW ARTICLE

Photonic crystal fibers, devices, and applications

Author information +
History +

Abstract

This paper reviews different types of air-silica photonic crystal fibers (PCFs), discusses their novel properties, and reports recent advances in PCF components and sensors as well as techniques for splicing PCFs to standard telecomm fibers.

Keywords

photonic crystal fibers (PCFs) / microstructured optical fibers / hollow-core photonic bandgap fibers (HC PBFs) / optical fiber devices / optical fiber sensors

Cite this article

Download citation ▾
Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications. Front Optoelec, 2013, 6(1): 3‒24 https://doi.org/10.1007/s12200-012-0301-y

References

[1]
Knight J C, Birks T A, Russell P St J, Atkin D M. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547–1549
CrossRef Pubmed Google scholar
[2]
Birks T A, Knight J C, Russell P S. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963
CrossRef Pubmed Google scholar
[3]
Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S, Roberts P J, Allan D C. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537–1539
CrossRef Pubmed Google scholar
[4]
Broderick N G R, Monro T M, Bennett P J, Richardson D J. Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, 1999, 24(20): 1395–1397
CrossRef Pubmed Google scholar
[5]
Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A, Russell P, St J. Highly birefringent photonic crystal fibers. Optics Letters, 2000, 25(18): 1325–1327
CrossRef Pubmed Google scholar
[6]
Ju J, Jin W, Demokan M S. Properties of a highly birefringent photonic crystal fiber. IEEE Photonics Technology Letters, 2003, 15(10): 1375–1377
CrossRef Google scholar
[7]
Knight J, Birks T, Russell P, de Sandro J. Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1998, 15(3): 748
CrossRef Google scholar
[8]
Mortensen N A, Folkenberg J R, Nielsen M D, Hansen K P. Modal cutoff and the V parameter in photonic crystal fibers. Optics Letters, 2003, 28(20): 1879–1881
CrossRef Pubmed Google scholar
[9]
Nielsen M D, Mortensen N A, Folkenberg J R, Bjarklev A. Mode-field radius of photonic crystal fibers expressed by the V parameter. Optics Letters, 2003, 28(23): 2309–2311
CrossRef Pubmed Google scholar
[10]
Kuhlmey B T, McPhedran R C, Martijn de Sterke C. Modal cutoff in microstructured optical fibers. Optics Letters, 2002, 27(19): 1684–1686
CrossRef Pubmed Google scholar
[11]
Folkenberg J R, Mortensen N A, Hansen K P, Hansen T P, Simonsen H R, Jakobsen C. Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers. Optics Letters, 2003, 28(20): 1882–1884
CrossRef Pubmed Google scholar
[12]
Limpert J, Schreiber T, Nolte S, Zellmer H, Tunnermann T, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A, Jakobsen C. High-power air-clad large-mode-area photonic crystal fiber laser. Optics Express, 2003, 11(7): 818–823
CrossRef Pubmed Google scholar
[13]
Blake J N, Kim B Y, Shaw H J. Fiber-optic modal coupler using periodic microbending. Optics Letters, 1986, 11(3): 177
CrossRef Pubmed Google scholar
[14]
Sorin W V, Kim B Y, Shaw H J. Highly selective evanescent modal filter for two-mode optical fibers. Optics Letters, 1986, 11(9): 581–583
CrossRef Pubmed Google scholar
[15]
Kim B Y, Blake J N, Engan H E, Shaw H J. All-fiber acousto-optic frequency shifter. Optics Letters, 1986, 11(6): 389–391
CrossRef Pubmed Google scholar
[16]
Poole C D, Wiesenfeld J M, McCormick A R, Nelson K T. Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber. Optics Letters, 1992, 17(14): 985–987
CrossRef Pubmed Google scholar
[17]
Park H S, Song K Y, Yun S H, Kim B Y. All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers. Journal of Lightwave Technology, 2002, 20(10): 1864–1868
CrossRef Google scholar
[18]
Murphy K A, Miller M S, Vengsarkar A M, Claus R O. Elliptical-core two mode optical-fiber sensor implementation methods. Journal of Lightwave Technology, 1990, 8(11): 1688–1696
CrossRef Google scholar
[19]
Vengsarkar A M, Michie W C, Jankovic L, Culshaw B, Claus R O. Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature. Journal of Lightwave Technology, 1994, 12(1): 170–177
CrossRef Google scholar
[20]
Kim B Y, Blake J N, Huang S Y, Shaw H J. Use of highly elliptical core fibers for two-mode fiber devices. Optics Letters, 1987, 12(9): 729–731
CrossRef Pubmed Google scholar
[21]
Jin W, Wang Z, Ju J. Two-mode photonic crystal fibers. Optics Express, 2005, 13(6): 2082–2088
CrossRef Pubmed Google scholar
[22]
Hong K S, Park H C, Kim B Y, Hwang I K, Jin W, Ju J, Yeom D I. 1000 nm tunable acousto-optic filter based on photonic crystal fiber. Applied Physics Letters, 2008, 92(3): 031110
CrossRef Google scholar
[23]
Engan H E, Kim B Y, Blake J N, Shaw H J. Propagation and optical interaction of guided acoustic waves in two-mode optical fibers. Journal of Lightwave Technology, 1988, 6(3): 428–436
CrossRef Google scholar
[24]
Yun S H, Hwang I K, Kim B Y. All-fiber tunable filter and laser based on two-mode fiber. Optics Letters, 1996, 21(1): 27–29
CrossRef Pubmed Google scholar
[25]
Suzuki K, Kubota H, Kawanishi S, Tanaka M, Fujita M. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Optics Express, 2001, 9(13): 676–680
CrossRef Pubmed Google scholar
[26]
Hansen T P, Broeng J, Libori S E B, Knudsen E, Bjarklev A, Jensen J R, Simonsen H. Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technology Letters, 2001, 13(6): 588–590
CrossRef Google scholar
[27]
Folkenberg J, Nielsen M, Mortensen N, Jakobsen C, Simonsen H. Polarization maintaining large mode area photonic crystal fiber. Optics Express, 2004, 12(5): 956–960
CrossRef Pubmed Google scholar
[28]
Kubota H, Kawanishi S, Koyanagi S, Tanaka M, Yamaguchi S. Absolutely single polarization photonic crystal fiber. IEEE Photonics Technology Letters, 2004, 16(1): 182–184
CrossRef Google scholar
[29]
Ju J, Jin W, Demokan M S. Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm. Journal of Lightwave Technology, 2006, 24(2): 825–830
CrossRef Google scholar
[30]
Marcuse D. Light Transmission Optics. New York: Van Nostrand Reinhold, 1982
[31]
White T P, McPhedran R C, de Sterke C M, Botten L C, Steel M J. Confinement losses in microstructured optical fibers. Optics Letters, 2001, 26(21): 1660–1662
CrossRef Pubmed Google scholar
[32]
Ju J, Jin W, Demokan M S. Two-mode operation in highly birefringent photonic crystal fiber. IEEE Photonics Technology Letters, 2004, 16(11): 2472–2474
CrossRef Google scholar
[33]
Ju J, Wang Z, Jin W, Demokan M S. Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor. IEEE Photonics Technology Letters, 2006, 18(20): 2168–2170
CrossRef Google scholar
[34]
Agrawal G P. Nonlinear Fiber Optics. New York: Academic Presss, 2007
[35]
Finazzi V, Monro T M, Richardson D J. Small-core silica holey fibers: nonlinearity and confinement loss trade-offs. Journal of the Optical Society of America. B, Optical Physics, 2003, 20(7): 1427
CrossRef Google scholar
[36]
Ebendorff-Heidepriem H, Petropoulos P, Asimakis S, Finazzi V, Moore R C, Frampton K, Koizumi F, Richardson D, Monro T M. Bismuth glass holey fibers with high nonlinearity. Optics Express, 2004, 12(21): 5082–5087
CrossRef Pubmed Google scholar
[37]
Kiang K M, Frampton K, Monro T M, Moore R, Tucknott J, Hewak D W, Richardson D J, Rutt H N. Extruded singlemode non-silica glass holey optical fibres. Electronics Letters, 2002, 38(12): 546
CrossRef Google scholar
[38]
Kumar V V R, George A K, Reeves W H, Knight J C, Russell P St J, Omenetto F G, Taylor A J. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 2002, 10(25): 1520–1525
CrossRef Pubmed Google scholar
[39]
Kumar V V R, George A K, Knight J C, Russell P St J. Tellurite photonic crystal fiber. Optics Express, 2003, 11(20): 2641–2645
CrossRef Pubmed Google scholar
[40]
Monro T M, West Y D, Hewak D W, Broderick N G R, Richardson D J. Chalcogenide holey fibres. Electronics Letters, 2000, 36(24): 1998
CrossRef Google scholar
[41]
Ferrando A, Silvestre E, Andres P, Miret J J, Andres M V. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express, 2001, 9(13): 687–697
CrossRef Pubmed Google scholar
[42]
Reeves W H, Knight J C, Russell P St J, Roberts P J. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 2002, 10(14): 609–613
CrossRef Pubmed Google scholar
[43]
Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express, 2003, 11(8): 843–852
CrossRef Pubmed Google scholar
[44]
Hansen K P. Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Optics Express, 2003, 11(13): 1503–1509
CrossRef Pubmed Google scholar
[45]
Renversez G, Kuhlmey B, McPhedran R. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses. Optics Letters, 2003, 28(12): 989–991
CrossRef Pubmed Google scholar
[46]
Shen L P, Huang W P, Jian S S. Design of photonic crystal fibers for dispersion-related applications. Journal of Lightwave Technology, 2003, 21(7): 1644–1651
CrossRef Google scholar
[47]
Hoo Y L, Jin W, Ju J, Ho H L, Wang D N. Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion. Optics Communications, 2004, 242(4–6): 327–332
CrossRef Google scholar
[48]
Hoo Y L, Jin W, Ho H L, Wang D N, Windeler R S. Evanescent-wave gas sensing using microstructure fiber. Optical Engineering (Redondo Beach, Calif.), 2002, 41(1): 8–9
CrossRef Google scholar
[49]
Hoo Y L, Jin W, Shi C Z, Ho H L, Wang D N, Ruan S C. Design and modeling of a photonic crystal fiber gas sensor. Applied Optics, 2003, 42(18): 3509–3515
CrossRef Pubmed Google scholar
[50]
Stolen R H, Lee C, Jain R K. Development of the stimulated Raman spectrum in single-mode silica fibers. Journal of the Optical Society of America. B, Optical Physics, 1984, 1(4): 652
CrossRef Google scholar
[51]
Baldeck P L, Alfano R R. Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers. Journal of Lightwave Technology, 1987, 5(12): 1712–1715
CrossRef Google scholar
[52]
Ilev I, Kumagai H, Toyoda K, Koprinkov I. Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping. Applied Optics, 1996, 35(15): 2548–2553
CrossRef Pubmed Google scholar
[53]
Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, 25(1): 25–27
CrossRef Pubmed Google scholar
[54]
Coen S, Chau A H C, Leonhardt R, Harvey J D, Knight J C, Wadsworth W J, Russell P, St J. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Optics Letters, 2001, 26(17): 1356–1358
CrossRef Pubmed Google scholar
[55]
Coen S, Chau A H L, Leonhardt R, Harvey J D, Knight J C, Wadsworth W J, Russell P, St J. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. Journal of the Optical Society of America. B, Optical Physics, 2002, 19(4): 753–764
CrossRef Google scholar
[56]
Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J, Coen S. Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping. Journal of the Optical Society of America. B, Optical Physics, 2002, 19(4): 765–771
CrossRef Google scholar
[57]
Gaeta A L. Nonlinear propagation and continuum generation in microstructured optical fibers. Optics Letters, 2002, 27(11): 924–926
CrossRef Pubmed Google scholar
[58]
Yamamoto T, Kubota H, Kawanishi S, Tanaka M, Yamaguchi S. Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537–1540
CrossRef Pubmed Google scholar
[59]
Hundertmark H, Kracht D, Wandt D, Fallnich C, Kumar V V R K, George A K, Knight J C, Russell P St J. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm. Optics Express, 2003, 11(24): 3196–3201
CrossRef Pubmed Google scholar
[60]
Prabhu M, Taniguchi A, Hirose S, Lu J, Musha M, Shirakawa A, Ueda K. Supercontinuum generation using Raman fiber laser. Applied Physics. B, Lasers and Optics, 2003, 77(2–3): 205–210
CrossRef Google scholar
[61]
Abeeluck A K, Headley C, Jørgensen C G. High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser. Optics Letters, 2004, 29(18): 2163–2165
CrossRef Pubmed Google scholar
[62]
Avdokhin A V, Popov S V, Taylor J R. Continuous-wave, high-power, Raman continuum generation in holey fibers. Optics Letters, 2003, 28(15): 1353–1355
CrossRef Pubmed Google scholar
[63]
Abeeluck A K, Headley C. Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation. Optics Letters, 2005, 30(1): 61–63
CrossRef Pubmed Google scholar
[64]
Agrawal G P. Application of Nonlinear Fiber Optics, New York: Academic Press, 2008
[65]
Kano H, Hamaguchi H. Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy. Journal of Raman Spectroscopy, 2006, 37(1–3): 411–415
CrossRef Google scholar
[66]
Nagahara T, Imura K, Okamoto H. Time-resolved scanning near-field optical microscopy with supercontinuum light pulses generated in microstructure fiber. Review of Scientific Instruments, 2004, 75(11): 4528
CrossRef Google scholar
[67]
Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K, Windeler R S. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Optics Letters, 2001, 26(9): 608–610
CrossRef Pubmed Google scholar
[68]
Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hansch T W. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Physical Review Letters, 2000, 84(22): 5102–5105
CrossRef Pubmed Google scholar
[69]
Holzwarth R, Udem T, Hansch T W, Knight J C, Wadsworth W J, Russell P St J. Optical frequency synthesizer for precision spectroscopy. Physical Review Letters, 2000, 85(11): 2264–2267
CrossRef Pubmed Google scholar
[70]
Takara H, Ohara T, Sato K. Over 1000 km DWDM transmission with supercontinuum multi-carrier source. Electronics Letters, 2003, 39(14): 1078
CrossRef Google scholar
[71]
Yusoff Z, Petropoulos P, Furusawa K, Monro T M, Richardson D J. A 36-channel × 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photonics Technology Letters, 2003, 15(12): 1689–1691
CrossRef Google scholar
[72]
Monro T M, Richardson D J, Bennett P J. Developing holey fibres for evanescent field devices. Electronics Letters, 1999, 35(14): 1188
CrossRef Google scholar
[73]
Stewart G, Norris J, Clark D F, Culshaw B. Evanescent-wave chemical sensors--a theoretical evaluation. International Journal of Optoelectronics, 1991, 6(3): 227–238
[74]
Stewart G, Jin W, Culshaw B. Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared. Sensors and Actuators. B, Chemical, 1997, 38(1–3): 42–47
CrossRef Google scholar
[75]
Ho H L, Hoo Y L, Jin W, Ju J, Wang D N, Windeler R S, Li Q. Optimizing microstructured optical fibers for evanescent wave gas sensing. Sensors and Actuators. B, Chemical, 2007, 122(1): 289–294
CrossRef Google scholar
[76]
Cussler E L. Diffusion: Mass Transfer in Fluid Systems. New York: Cambridge University, 1997
[77]
Smith C M, Venkataraman N, Gallagher M T, Müller D, West J A, Borrelli N F, Allan D C, Koch K W. Low-loss hollow-core silica/air photonic bandgap fibre. Nature, 2003, 424(6949): 657–659
CrossRef Pubmed Google scholar
[78]
Roberts P J, Couny F, Sabert H, Mangan B J, Williams D P, Farr L, Mason M W, Tomlinson A, Birks T A, Knight J C, St J, Russell P. Ultimate low loss of hollow-core photonic crystal fibres. Optics Express, 2005, 13(1): 236–244
CrossRef Pubmed Google scholar
[79]
Amezcua-Correa R, Broderick N G R, Petrovich M N, Poletti F, Richardson D J. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation. Optics Express, 2007, 15(26): 17577–17586
CrossRef Pubmed Google scholar
[80]
Chen X, Li M J, Venkataraman N, Gallagher M T, Wood W A, Crowley A M, Carberry J P, Zenteno L A, Koch K W. Highly birefringent hollow-core photonic bandgap fiber. Optics Express, 2004, 12(16): 3888–3893
CrossRef Pubmed Google scholar
[81]
Benabid F, Couny F, Knight J C, Birks T A, Russell P St J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature, 2005, 434(7032): 488–491
CrossRef Pubmed Google scholar
[82]
Thapa R, Knabe K, Corwin K L, Washburn B R. Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells. Optics Express, 2006, 14(21): 9576–9583
CrossRef Pubmed Google scholar
[83]
Hensley C J, Broaddus D H, Schaffer C B, Gaeta A L. Photonic band-gap fiber gas cell fabricated using femtosecond micromachining. Optics Express, 2007, 15(11): 6690–6695
CrossRef Pubmed Google scholar
[84]
Hoo Y L, Jin W, Ho H L, Ju J, Wang D N. Gas diffusion measurement using hollow-core photonic bandgap fiber. Sensors and Actuators. B, Chemical, 2005, 105(2): 183–186
CrossRef Google scholar
[85]
Kornaszewski L W, Gayraud N, Stone J M, Macpherson W N, George A K, Knight J C, Hand D P, Reid D T. Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator. Optics Express, 2007, 15(18): 11219–11224
CrossRef Pubmed Google scholar
[86]
Cubillas A M, Hald J, Petersen J C. High resolution spectroscopy of ammonia in a hollow-core fiber. Optics Express, 2008, 16(6): 3976–3985
CrossRef Pubmed Google scholar
[87]
Benabid F, Knight J C, Antonopoulos G, Russell P, St J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 2002, 298(5592): 399–402
CrossRef Pubmed Google scholar
[88]
Henningsen J, Hald J, Peterson J C. Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers. Optics Express, 2005, 13(26): 10475–10482
CrossRef Pubmed Google scholar
[89]
Benabid F, Light P S, Couny F, Russell P, St J. Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF. Optics Express, 2005, 13(15): 5694–5703
CrossRef Pubmed Google scholar
[90]
Fini J M. Microstructure fibres for optical sensing in gases and liquids. Measurement Science & Technology, 2004, 15(6): 1120–1128
CrossRef Google scholar
[91]
De Matos C J S, Cordeiro C M B, Dos Santos E M, Ong J S K, Bozolan A, Brito Cruz C H. Liquid-core, liquid-cladding photonic crystal fibers. Optics Express, 2007, 15(18): 11207–11212
CrossRef Pubmed Google scholar
[92]
Xiao L, Jin W, Demokan M S, Ho H L, Hoo Y L, Zhao C. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Optics Express, 2005, 13(22): 9014–9022
CrossRef Pubmed Google scholar
[93]
Han Y, Oo M K K, Zhu Y N, Xiao L M, Demohan M S, Jin W, Du H. Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering. Optical Engineering (Redondo Beach, Calif.), 2008, 47(4): 040502
CrossRef Google scholar
[94]
Xuan H F, Jin W, Ju J, Ho H L, Zhang M, Liao Y B. Low-contrast photonic bandgap fibers and their potential applications in liquid-base sensors. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2007, 6619: 36
CrossRef Google scholar
[95]
Xiao L M, Jin W, Demokan M S. Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs. Optics Express, 2007, 15(24): 15637–15647
CrossRef Pubmed Google scholar
[96]
Wang Y P, Tan X L, Jin W, Liu S J, Ying D Q, Hoo Y L. Improved bending property of half-filled photonic crystal fiber. Optics Express, 2010, 18(12): 12197–12202
CrossRef Pubmed Google scholar
[97]
Wang Y P, Tan X L, Jin W, Ying D Q, Hoo Y L, Liu S J. Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications. Optics Letters, 2010, 35(1): 88–90
CrossRef Pubmed Google scholar
[98]
Terrel M, Digonnet M J F, Fan S. Polarization controller for hollow-core fiber. Optics Letters, 2007, 32(11): 1524–1526
CrossRef Pubmed Google scholar
[99]
Pang M, Jin W. A hollow-core photonic bandgap fiber polarization controller. Optics Letters, 2011, 36(1): 16–18
CrossRef Pubmed Google scholar
[100]
Ozcan A, Tewary A, Digonnet M J F, Kino G S. Observation of mode coupling in bitapered air-core photonic bandgap fibers. Optics Communications, 2007, 271(2): 391–395
CrossRef Google scholar
[101]
Wang Y P, Jin W, Ju J, Xuan H F, Ho H L, Xiao L M, Wang D N. Long period gratings in air-core photonic bandgap fibers. Optics Express, 2008, 16(4): 2784–2790
CrossRef Pubmed Google scholar
[102]
Jin L, Jin W, Ju J, Wang Y P. Investigation of long-period grating resonances in hollow-core photonic bandgap fibers. Journal of Lightwave Technology, 2011, 29(11): 1708–1714
CrossRef Google scholar
[103]
Xuan H F, Jin W, Ju J, Wang Y P, Zhang M, Liao Y B, Chen M H. Hollow-core photonic bandgap fiber polarizer. Optics Letters, 2008, 33(8): 845–847
CrossRef Pubmed Google scholar
[104]
Hoo Y L, Jin W, Ho H L, Ji J, Wang D N. Gas diffusion measurement using hollow-core photonic bandgap fiber. Sensors and Actuators. B, Chemical, 2005, 105(2): 183–186
CrossRef Google scholar
[105]
Hoo Y L, Liu S J, Ho H L, Jin W. Fast response microstructured optical fiber methane sensor with multiple side-openings. IEEE Photonics Technology Letters, 2010, 22(5): 296–298
CrossRef Google scholar
[106]
Pang M, Jin W. Detection of acoustic pressure with hollow-core photonic bandgap fiber. Optics Express, 2009, 17(13): 11088–11097
CrossRef Pubmed Google scholar
[107]
Xiao L, Demokan M S, Jin W, Wang Y, Zhao C L. Fusion splicing photonic crystal fibers and conventional single-mode Fibers: microhole collapse effect. Journal of Lightwave Technology, 2007, 25(11): 3563–3574
CrossRef Google scholar
[108]
Xiao L, Jin W, Demokan M S. Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges. Optics Letters, 2007, 32(2): 115–117
CrossRef Pubmed Google scholar

Acknowledgements

The research work was partially supported by the Hong Kong SAR government (Nos. PolyU5196/09E, PolyU5182/07E, PolyU5187/06E); the National Natural Science Foundation of China (Grants Nos. 61290313 and 60629401), the Hong Kong Polytechnic University (No. J-BB9K). We thank Y. P. Wang, H. F. Xuan, L. M. Xiao, K. S. Hung, H. C. Park, D. N. Wang, M. Zhang, C. L. Zhao, Y. B. Liao, I. K. Hwang, Z. Wang, M. S. Demokan, H. Y. Tam, B. Y. Kim and R. S. Windeler for their contributions/inputs at different stages of the research.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1824 KB)

Accesses

Citations

Detail

Sections
Recommended

/