Review on SOA-MZI-based photonic add/drop and switching operations
Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI
Review on SOA-MZI-based photonic add/drop and switching operations
Semiconductor optical amplifier-Mach-Zehnder interferometer (SOA-MZI) is a technologically mature optical device that can be exploited for a wide range of operations on both amplitude and phase modulated signals, with performance limited by the carrier lifetime in the SOAs. Recent advances on SOA structures have demonstrated their suitability for high quality, ultra-fast photonic signal processing, making SOA-MZI a good candidate for elaborating signals in new generation high-capacity optical networks. Dynamic wavelength switching/routing and add/drop operations are expected to bring benefits in future optical networks in terms of improved system flexibility and efficiency. The capability of performing such operations directly in the optical domain can significantly reduce the number of opto/electrical and electro/optical conversions in the routing nodes, reducing their power consumption and their latency time. Moreover, since phase-shift keying (PSK) formats or other advanced modulation formats involving both amplitude and phase modulation, start to coexist in optical communication systems with the conventional on-off keying (OOK) modulation format, the availability of a single device, suitable for processing all these different signals, is mandatory. The SOA-MZI fits all these requirements for both OOK and constant-envelope phase-modulated signals, providing a compact and flexible solution. Here we review on the use of the SOA-MZI for carrying out all-optical switching operations, by realizing wavelength conversion and add/drop functionalities, both for OOK and differential binary phase shift keying (DPSK) signals up to 40 Gb/s. Power penalties lower than 2 dB are demonstrated in all cases.
all-optical signal processing / wavelength conversion / semiconductor optical amplifier-Mach-Zehnder interferometer (SOA-MZI)
[1] |
Andriolli N, Buron J, Ruepp S, Cugini F, Valcarenghi L, Castoldi P. Label preference schemes in GMPLS controlled networks. IEEE Communications Letters, 2006, 10(12): 849–851
CrossRef
Google scholar
|
[2] |
Azodolmolky S, Klinkowski M, Marin E, Careglio D, Pareta J S, Tomkos I. A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks. Computer Networks, 2009, 53(7): 926–944
CrossRef
Google scholar
|
[3] |
Gnauck A H, Winzer P J. Optical phase-shift-keyed transmission. IEEE/OSA Journal of Lightwave Technology, 2005, 23(1): 115–130
|
[4] |
Schubert C, Schmidt-Langhorst C, Schulze K, Marembert V, Weber H G. Time division add-drop multiplexing up to 320 Gbit/s. In: Proceedings of Conference on Optical Fiber Communication Conference. 2005, 4, OThN2
|
[5] |
Phillips D, Ellis A D, Thiele H J, Manning R J, Kelly A E. 40 Gbit/s all optical regeneration and demultiplexing using a semiconductor non-linear interferometer. IEE Electronics Letters, 1998, 34(24): 2340–2342
CrossRef
Google scholar
|
[6] |
Diez S, Ludwig R, Weber H G. Gain-transparent SOA-switch for high-bitrate OTDM add/drop multiplexing. IEEE Photonics Technology Letters, 1999, 11(1): 60–62
CrossRef
Google scholar
|
[7] |
Liu Y, Tangdiongga E, Li Z, Zhang S, de Waardt H, Khoe G D, Dorren H J S. Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. IEEE/OSA Journal of Lightwave Technology, 2006, 24(1): 230–236
|
[8] |
Verdurmen E J M, Zhao Y, Tangdiongga E, Turkiewicz J P, Khoe G D, de Waardt H. Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s. IEE Electronics Letters, 2005, 41(6): 340–350
|
[9] |
Mulvad H, Galili M, Oxenlowe L K, Clausen A T, Jeppesen P, Gruner-Nielsen L. 640 Gbit/s optical time-division add-drop multiplexing in a non-linear optical loop mirror. IEEE/LEOS Winter Topicals Meeting Series, 2009, 209–210
|
[10] |
Wadsworth W J. Nonlinear wavelength conversion and pulse manipulation in photonic crystal fibres. In: Proceedings of Eouropean Conference Optical Communication. 2010, Th.9.F.1
|
[11] |
Bogoni A, Wu X, Fazal I, Willner A. 160 Gb/s time-domain channel extraction/insertion and all-optical logic operations exploiting a single PPLN waveguide. IEEE/OSA Journal of Lightwave Technology, 2009, 27(19): 4221–4227
|
[12] |
Liu S, Kwang J L, Kakande J, Parmigiani F, Slavik R, Petropoulos P, Richardson D J, Gallo K. Phase-sensitive wavelength conversion based on cascaded quadratic processes in periodically poled lithium niobate waveguides. In: Proceedings of Conference on Optical Fiber Communication. 2011, Th.9.F.1.
|
[13] |
Contestabile G, Maruta A, Sekiguchi S, Morito K, Sugawara M, Kitayama K. All-optical signal processing using QD-SOA. In: Proceedings of Electronics and Communications Conference. 2010, 200–201
|
[14] |
Leuthold J, Besse P A, Eckner J, Gamper E, Dülk M, Melchior H. All-optical space switches with gain and principally ideal extinction ratios. IEEE Journal of Quantum Electronics, 1998, 34(4): 622–633
CrossRef
Google scholar
|
[15] |
Nakamura S, Tajima K. Bit-rate-transparent non-return-to-zero all-optical wavelength conversion at up to 42 Gb/s by operating symmetric-Mach-Zehnder switch with new scheme. In: Proceedings of Conference on Optical Fiber Conference. 2004, FD3
|
[16] |
Hattori M, Nishimura K, Inohara R, Usami M. Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter. IEEE/OSA Journal of Lightwave Technology, 2007, 25(2): 512–519
|
[17] |
Yi X, Yu R, Kurumida J, Ben Yoo S J. A theoretical and experimental study on modulation-format-independent wavelength conversion. IEEE/OSA Journal of Lightwave Technology, 2010, 28(4): 587–595
CrossRef
Google scholar
|
[18] |
Hatta T, Miyahara T, Miyazaki Y, Takagi K, Matsumoto K, Aoyagi T, Motoshima K, Mishina K, Maruta A, Kitayama K. Polarization-insensitive monolithic 40-Gbps SOA-MZI wavelength converter with narrow active waveguides. IEEE Journal on Selected Topics in Quantum Electronics, 2007, 13(1): 32–39
CrossRef
Google scholar
|
[19] |
Poustie A, Wyatt R, McDougall R, Maxwell G, Hemenway B R. Optical timing jitter transfer characteristics of a 40 Gb/s hybrid integrated SOA-Mach-Zehnder interferometer all-optical regenerator. In: Proceedings of European Conference on Optical Communication. 2005, 3, 413–414
|
[20] |
Apostolopoulos D, Simos H, Petrantonakis D, Bogris A, Spyropoulou M, Bougioukos M, Vyrsokinos K, Pleros N, Syvridis D, Avramopoulos H. A new scheme for regenerative 40 Gb/s NRZ wavelength conversion using a hybrid integrated SOA-MZI. In: Proceedings of Conference on Optical Fiber Communication. 2010, OThS6
|
[21] |
Kang I, Dorrer C, Zhang L, Rasras M, Buhl L , Bhardwaj A, Cabot S, Dinu M, Liu X, Cappuzzo M, Gomez L, Wong-Foy A, Chen Y F, Patel S, Neilson D T, Jacques J, Giles C R. Regenerative all-optical wavelength conversion of 40 Gb/s DPSK signals using a SOA MZI. In: Proceedings of the 31st European Conference on Optical Communication. 2005, 6, 29–30
|
[22] |
Petrantonakis D, Zakynthinos P, Apostolopoulos D, Poustie A, Maxwell G, Avramopoulos H. All-optical four-wavelength burst mode regeneration using integrated quad SOA-MZI arrays. IEEE Photonics Technology Letters, 2008, 20(23): 1953–1955
CrossRef
Google scholar
|
[23] |
Wang J P, Savage S J, Robinson B S, Hamilton S A, Ippen E P, Mu R, Wang R, Spiekman L, Stefanov B B. Regeneration using an SOA-MZI in a 100-pass 10000-km recirculating fiber loop. In: Proceedings of Conference on Lasers and Electro-Optics. 2007, CMZ1
|
[24] |
Kim J Y, Kang J M, Kim T Y, Han S K. All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment. IEEE/OSA Journal of Lightwave Technology, 2006, 24(9): 3392–3399
|
[25] |
Martinez J M, Herrera J, Ramos F, Marti J. All-optical correlation employing single logic XOR gate with feedback. IEE Electronics Letters, 2006, 42(20): 1170–1171
CrossRef
Google scholar
|
[26] |
Aikawa Y, Shimizu S, Uenohara H. Demonstration of all-optical divider circuit using SOA-MZI-type XOR gate and feedback loop for forward error detection. IEEE/OSA Journal of Lightwave Technology, 2011, 29(15): 2259–2266
|
[27] |
Vlachos KG, Monroy I T, Koonen A M J, Peucheret C, Jeppesen P. STOLAS: switching technologies for optically labeled signals. IEEE Communications Magazine, 2003, 41(11): 9–15
CrossRef
Google scholar
|
[28] |
Pleros N, Zakynthinos P, Poustie A, Tsiokos D, Bakopoulos P, Petrantonakis D, Kanellos G.T, Maxwell G, Avramopoulos H. Optical signal processing using integrated multi-element SOA–MZI switch arrays for packet switching. IET Optoelectronics, 2007, 1(3): 120–126
|
[29] |
Zervas G, Sadeghioon L, Klonidis D, Qin Y, Nejabati R, Simeonidou D. Demonstration of novel multi-granular switch architecture on an application-aware end-to-end multi-bit rate OBS network testbed. In: Proceedings of ECOC 2007 Post-deadline papers. 2007, 1–2
|
[30] |
Manning R J, Davies D A O. Three-wavelength device for all-optical signal processing. Optics Letters, 1994, 19(12): 889–991
CrossRef
Pubmed
Google scholar
|
[31] |
Nguyen A, Porzi C, Serafino G, Fresi F, Contestabile G, Bogoni A. All-optical gated wavelength converter-eraser using a single SOA-MZI. IEEE Photonics Technology Letters, 2011, 23(21): 1621–1623
CrossRef
Google scholar
|
[32] |
Pinna S, Porzi C, Contestabile G, Bogoni A. Broadband operation of high-speed all-optical gated wavelength shifter. IEEE Photonics Technology Letters, 2012, 24(17): 1546–1548
CrossRef
Google scholar
|
[33] |
Nguyen A, Porzi C, Pinna S, Contestabile G, Bogoni A. 40 Gb/s All-Optical Selective Wavelength Shifter. In: Proceedings of Conference on CLEO 2012: Science and Innovations. 2012, CM2A.2
|
[34] |
Porzi C, Contestabile G, Bogoni A. All-optical simultaneous drop and wavelength conversion of DPSK data. Optics Letters, 2012, 37(13): 2523–2525
|
[35] |
Morgan T J, Lacey J P R, Tucker R S. Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency. IEEE Photonics Technology Letters, 1998, 10(10): 1401–1403
CrossRef
Google scholar
|
[36] |
Porzi C, Bogoni A, Potì L, Contestabile G. Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA. IEEE Photonics Technology Letters, 2005, 17(3): 633–635
CrossRef
Google scholar
|
/
〈 | 〉 |