Flower-like CuO hierarchical nanostructures: synthesis, characterization, and property

Jiarui HUANG, Feng TANG, Cuiping GU, Chengcheng SHI, Muheng ZHAI

PDF(331 KB)
PDF(331 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (4) : 429-434. DOI: 10.1007/s12200-012-0293-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Flower-like CuO hierarchical nanostructures: synthesis, characterization, and property

Author information +
History +

Abstract

Nanoflake-based flower-like CuO nanostructures have been synthesized through thermal decomposition of [Cu(NH3)4]2+ solution without any surfactants and catalysts at low temperature. The products are characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The possible formation process based on the aggregation-recrystallization mechanism is proposed. Finally, the obtained flower-like CuO hierarchical nanostructures have been used as the photocatalyst in the experiments. It is found that the as-prepared flower-like CuO hierarchical nanostructures exhibit superior photocatalytic property on photocatalytic decomposition of Rhodamine B due to their hierarchical structures.

Keywords

cupric oxide (CuO) / microflowers / hierarchical nanostructures / photocatalytic property

Cite this article

Download citation ▾
Jiarui HUANG, Feng TANG, Cuiping GU, Chengcheng SHI, Muheng ZHAI. Flower-like CuO hierarchical nanostructures: synthesis, characterization, and property. Front Optoelec, 2012, 5(4): 429‒434 https://doi.org/10.1007/s12200-012-0293-7

References

[1]
Huo Y J, Lin H, Chen R, Rong Y W, Kamins T I, Harris J S. MBE growth of tensile-strained Ge quantum wells and quantum dots. Frontiers of Optoelectronics, 2012, 5(1): 112–116
CrossRef Google scholar
[2]
Xue F, Liu F, Huang Y D. Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton. Frontiers of Optoelectronics, 2012, 5(1): 51–62
CrossRef Google scholar
[3]
Gowda S R, Reddy A L M, Shaijumon M M, Zhan X B, Ci L J, Ajayan P M. Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications. Nano Letters, 2011, 11(1): 101–106
CrossRef Pubmed Google scholar
[4]
Ewers T D, Sra A K, Norris B C, Cable R E, Cheng C H, Shantz D F, Schaak R E. Spontaneous hierarchical assembly of rhodium nanoparticles into spherical aggregates and superlattices. Chemistry of Materials, 2005, 17(3): 514–520
CrossRef Google scholar
[5]
Liu W T. Nanoparticles and their biological and environmental applications. Journal of Bioscience and Bioengineering, 2006, 102(1): 1–7
CrossRef Pubmed Google scholar
[6]
Jin D L, Miu X, Yu X J, Wang L N, Wang N Y, Wang L C. Synthesis of core-shell microspheres of poly(methyl methacrylate)-CuO by solution deposition method. Materials Chemistry and Physics, 2010, 124(1): 69–72
CrossRef Google scholar
[7]
Yu L G, Zhang G M, Wu Y, Bai X, Guo D Z. Cupric oxide nanoflowers synthesized with a simple solution route and their field emission. Journal of Crystal Growth, 2008, 310(12): 3125–3130
CrossRef Google scholar
[8]
Wang S L, Xu H, Qian L Q, Jia X, Wang J W, Liu Y Y, Tang W H. CTAB-assisted synthesis and photocatalytic property of CuO hollow microspheres. Journal of Solid State Chemistry, 2009, 182(5): 1088–1093
CrossRef Google scholar
[9]
Switzer J A, Kothari H M, Poizot P, Nakanishi S, Bohannan E W. Enantiospecific electrodeposition of a chiral catalyst. Nature, 2003, 425(6957): 490–493
CrossRef Pubmed Google scholar
[10]
Chowdhuri A, Gupta V, Sreenivas K, Kumar R, Mozumdar S, Patanjali P K. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Applied Physics Letters, 2004, 84(7): 1180–1182
CrossRef Google scholar
[11]
Gao X P, Bao J L, Pan G L, Zhu H Y, Huang P X, Wu F, Song D Y. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. Journal of Physical Chemistry B, 2004, 108(18): 5547–5551
CrossRef Google scholar
[12]
Hsieh C T, Chen J M, Lin H H, Shih H C. Field emission from various CuO nanostructures. Applied Physics Letters, 2003, 83(16): 3383–3385
CrossRef Google scholar
[13]
Chen J, Deng S Z, Xu N S, Zhang W X, Wen X G, Yang S H. Temperature dependence of field emission from cupric oxide nanobelt films. Applied Physics Letters, 2003, 83(4): 746–748
CrossRef Google scholar
[14]
Wen X G, Xie Y T, Choi C L, Wan K C, Li X Y, Yang S H. Copper-based nanowire materials: templated syntheses, characterizations, and applications. Langmuir, 2005, 21(10): 4729–4737
CrossRef Pubmed Google scholar
[15]
Liu Y, Chu Y, Li M Y, Li L L, Dong L H. In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process. Journal of Materials Chemistry, 2006, 16(2): 192–198
CrossRef Google scholar
[16]
Basu M, Sinha A K, Pradhan M, Sarkar S, Pal A, Pal T. Monoclinic CuO nanoflowers on resin support: recyclable catalyst to obtain perylene compound. Chemical Communications (Cambridge), 2010, 46(46): 8785–8787
CrossRef Pubmed Google scholar
[17]
Gu A X, Wang G F, Zhang X J, Fang B. Synthesis of CuO nanoflower and its application as a H2O2 sensor. Bulletin of Materials Science, 2010, 33(1): 17–20
CrossRef Google scholar
[18]
Yang Z H, Xu J, Zhang W X, Liu A P, Tang S P. Controlled synthesis of CuO nanostructures by a simple solution route. Journal of Solid State Chemistry, 2007, 180(4): 1390–1396
CrossRef Google scholar
[19]
Yang S Y, Wang C F, Chen L, Chen S. Facile dicyandiamide-mediated fabrication of well-defined CuO hollow microspheres and their catalytic application. Materials Chemistry and Physics, 2010, 120(2-3): 296–301
CrossRef Google scholar
[20]
Yang L X, Zhu Y J, Tong H, Li L, Zhang L. Multistep synthesis of CuO nanorod bundles and interconnected nanosheets using Cu2(OH)3Cl plates as precursor. Materials Chemistry and Physics, 2008, 112(2): 442–447
CrossRef Google scholar
[21]
Hong J M, Li J, Ni Y H. Urchin-like CuO microspheres: Synthesis, characterization, and properties. Journal of Alloys and Compounds, 2009, 481(1-2): 610–615
CrossRef Google scholar
[22]
Wang X, Hu C G, Liu H, Du G J, He X S, Xi Y. Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sensors and Actuators B, Chemical, 2010, 144(1): 220–225
CrossRef Google scholar
[23]
Lou X W, Li C M, Archer L A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Advanced Materials (Deerfield Beach, Fla.), 2009, 21(24): 2536–2539
CrossRef Google scholar
[24]
Yin X M, Li C C, Zhang M, Hao Q Y, Liu S, Chen L B, Wang T H. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. Journal of Physical Chemistry C, 2010, 114(17): 8084–8088
CrossRef Google scholar
[25]
Bayati M R, Golestani-Fard F, Moshfegh A Z. Visible photodecomposition of methylene blue over micro arc oxidized WO3-loaded TiO2 nano-porous layers. Applied Catalysis A: General, 2010, 382(2): 322–331
CrossRef Google scholar
[26]
Bayati M R, Moshfegh A Z, Golestani-Fard F. On the photocatalytic activity of the sulfur doped titania nano-porous films derived via micro-arc oxidation. Applied Catalysis A: General, 2010, 389(1-2): 60–67
CrossRef Google scholar
[27]
Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J M. Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 2001, 31(2): 145–157
CrossRef Google scholar
[28]
Hoffmann M R, Martin S T, Choi W, Bahnemannt D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96
CrossRef Google scholar
[29]
Jiang H Q, Endo H, Natori H, Nagai M, Kobayshi K. Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO4 composite under visible-light irradiation. Materials Research Bulletin, 2009, 44(3): 700–706
CrossRef Google scholar
[30]
Li H X, Bian Z F, Zhu J, Zhang D Q, Li G, Huo Y, Li H, Lu Y. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. Journal of the American Chemical Society, 2007, 129(27): 8406–8407
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21105001and 61203212), and Anhui Provincial Natural Science (No. 10040606Q34).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(331 KB)

Accesses

Citations

Detail

Sections
Recommended

/