Recent development in colloidal quantum dots photovoltaics

Li PENG, Jiang TANG, Mingqiang ZHU

PDF(673 KB)
PDF(673 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (4) : 358-370. DOI: 10.1007/s12200-012-0285-7
REVIEW ARTICLE
REVIEW ARTICLE

Recent development in colloidal quantum dots photovoltaics

Author information +
History +

Abstract

The increasing demand for sustainable and green energy supply spurred the surging research on high-efficiency, low-cost photovoltaics. Colloidal quantum dot solar cell (CQDSC) is a new type of photovoltaic device using lead chalcogenide quantum dot film as absorber materials. It not only has a potential to break the 33% Shockley-Queisser efficiency limit for single junction solar cell, but also possesses low-temperature, high-throughput solution processing. Since its first report in 2005, CQDSCs experienced rapid progress achieving a certified 7% efficiency in 2012, an averaged 1% efficiency gain per year. In this paper, we reviewed the research progress reported in the last two years. We started with background introduction and motivation for CQDSC research. We then briefly introduced the evolution history of CQDSC development as well as multiple exciton generation effect. We further focused on the latest efforts in improving the light absorption and carrier collection efficiency, including the bulk-heterojunction structure, quantum funnel concept, band alignment optimization and quantum dot passivation. Afterwards, we discussed the tandem solar cell and device stability, and concluded this article with a perspective. Hopefully, this review paper covers the major achievement in this field in year 2011–2012 and provides readers with a concise and clear understanding of recent CQDSC development.

Keywords

lead sulfide / colloidal quantum dots (CQDs) / solar cells / multiple exciton generation (MEG) / atomic ligands

Cite this article

Download citation ▾
Li PENG, Jiang TANG, Mingqiang ZHU. Recent development in colloidal quantum dots photovoltaics. Front Optoelec, 2012, 5(4): 358‒370 https://doi.org/10.1007/s12200-012-0285-7

References

[1]
Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011, 19(7): 894–897
CrossRef Google scholar
[2]
Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 2011, 334(6062): 1530–1533
CrossRef Pubmed Google scholar
[3]
Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A, Sargent E H. Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology, 2012, 7: 577- 582
CrossRef Google scholar
[4]
Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics, 2012, 6(3): 153–161
CrossRef Google scholar
[5]
Chung I, Lee B, He J, Chang R P H, Kanatzidis M G. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399): 486–489
CrossRef Pubmed Google scholar
[6]
Debnath R, Bakr O, Sargent E H. Solution-processed colloidal quantum dot photovoltaics: a perspective. Energy & Environmental Science, 2011, 4(12): 4870-4881
CrossRef Google scholar
[7]
Kramer I J, Sargent E H. Colloidal quantum dot photovoltaics: a path forward. ACS Nano, 2011, 5(11): 8506–8514
CrossRef Pubmed Google scholar
[8]
Tang J, Sargent E H. Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(1): 12–29
CrossRef Pubmed Google scholar
[9]
Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Advanced Materials (Deerfield Beach, Fla.), 2003, 15(21): 1844–1849
CrossRef Google scholar
[10]
Henry C H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. Journal of Applied Physics, 1980, 51(8): 4494-4500
CrossRef Google scholar
[11]
Wise F W. Lead salt quantum dots: the limit of strong quantum confinement. Accounts of Chemical Research, 2000, 33(11): 773–780
CrossRef Pubmed Google scholar
[12]
Brown A S, Green M A. Detailed balance limit for the series constrained two terminal tandem solar cell. Physica E, Low-Dimensional Systems and Nanostructures, 2002, 14(1-2): 96–100
CrossRef Google scholar
[13]
Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chemical Reviews, 2010, 110(11): 6873–6890
CrossRef Pubmed Google scholar
[14]
McDaniel H, Heil P E, Tsai C L, Kim K K, Shim M. Integration of type II nanorod heterostructures into photovoltaics. ACS Nano, 2011, 5(9): 7677–7683
CrossRef Pubmed Google scholar
[15]
Johnston K W, Pattantyus-Abraham A G, Clifford J P, Myrskog S H, MacNeil D D, Levina L, Sargent E H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Applied Physics Letters, 2008, 92(15): 151115
CrossRef Google scholar
[16]
Luther J M, Law M, Beard M C, Song Q, Reese M O, Ellingson R J, Nozik A J. Schottky solar cells based on colloidal nanocrystal films. Nano Letters, 2008, 8(10): 3488–3492
CrossRef Pubmed Google scholar
[17]
Leschkies K S, Beatty T J, Kang M S, Norris D J, Aydil E S. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. ACS Nano, 2009, 3(11): 3638–3648
CrossRef Pubmed Google scholar
[18]
Barkhouse D A, Debnath R, Kramer I J, Zhitomirsky D, Pattantyus-Abraham A G, Levina L, Etgar L, Grätzel M, Sargent E H. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(28): 3134–3138
CrossRef Pubmed Google scholar
[19]
Kramer I J, Zhitomirsky D, Bass J D, Rice P M, Topuria T, Krupp L, Thon S M, Ip A H, Debnath R, Kim H C, Sargent E H. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Advanced Materials (Deerfield Beach, Fla.), 2012, 24(17): 2315–2319
CrossRef Pubmed Google scholar
[20]
Rath A K, Bernechea M, Martinez L, Konstantatos G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2 S3 nanocrystals. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(32): 3712–3717
CrossRef Pubmed Google scholar
[21]
Rath A K, Bernechea M, Martinez L, de Arquer F P G, Osmond J, Konstantatos G. Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells. Nature Photonics, 2012, 6(8): 529–534
CrossRef Google scholar
[22]
Xu F, Ma X, Haughn C R, Benavides J, Doty M F, Cloutier S G. Efficient exciton funneling in cascaded PbS quantum dot superstructures. ACS Nano, 2011, 5(12): 9950–9957
CrossRef Pubmed Google scholar
[23]
Kramer I J, Levina L, Debnath R, Zhitomirsky D, Sargent E H. Solar cells using quantum funnels. Nano Letters. 2011, 11(9):3701-6
CrossRef Google scholar
[24]
Liu H, Tang J, Kramer I J, Debnath R, Koleilat G I, Wang X, Fisher A, Li R, Brzozowski L, Levina L, Sargent E H. Electron acceptor materials engineering in colloidal quantum dot solar cells. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(33): 3832–3837
Pubmed
[25]
Gao J, Luther J M, Semonin O E, Ellingson R J, Nozik A J, Beard M C. Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Nano Letters, 2011, 11(3): 1002–1008
CrossRef Pubmed Google scholar
[26]
Gao J, Perkins C L, Luther J M, Hanna M C, Chen H Y, Semonin O E, Nozik A J, Ellingson R J, Beard M C. n-type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Letters, 2011, 11(8): 3263–3266
CrossRef Pubmed Google scholar
[27]
Brown P R, Lunt R R, Zhao N, Osedach T P, Wanger D D, Chang L Y, Bawendi M G, Bulović V. Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Letters, 2011, 11(7): 2955–2961
CrossRef Pubmed Google scholar
[28]
Jeong K S, Tang J, Liu H, Kim J, Schaefer A W, Kemp K, Levina L, Wang X, Hoogland S, Debnath R, Brzozowski L, Sargent E H, Asbury J B. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano, 2012, 6(1): 89–99
CrossRef Pubmed Google scholar
[29]
Klem E J D, Gregory C W, Cunningham G B, Hall S, Temple D S, Lewis J S. Planar PbS quantum dot/C60 heterojunction photovoltaic devices with 5.2% power conversion efficiency. Applied Physics Letters, 2012, 100(17): 173109
CrossRef Google scholar
[30]
Tang J, Kemp K W, Hoogland S, Jeong K S, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou K W, Fischer A, Amassian A, Asbury J B, Sargent E H. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Materials, 2011, 10(10): 765–771
CrossRef Pubmed Google scholar
[31]
Sargent E H. Infrared photovoltaics made by solution processing. Nature Photonics, 2009, 3(6): 325–331
CrossRef Google scholar
[32]
Wang X, Koleilat G I, Tang J, Liu H, Kramer I J, Debnath R, Brzozowski L, Barkhouse D A R, Levina L, Hoogland S, Sargent E H. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photonics, 2011, 5(8): 480–484
CrossRef Google scholar
[33]
Choi J J, Wenger W N, Hoffman R S, Lim Y F, Luria J, Jasieniak J, Marohn J A, Hanrath T. Solution-processed nanocrystal quantum dot tandem solar cells. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(28): 3144–3148
CrossRef Pubmed Google scholar
[34]
Koleilat G I, Wang X, Sargent E H. Graded recombination layers for multijunction photovoltaics. Nano Letters, 2012, 12(6): 3043–3049
CrossRef Pubmed Google scholar
[35]
Tang J, Wang X, Brzozowski L, Barkhouse D A R, Debnath R, Levina L, Sargent E H. Schottky quantum dot solar cells stable in air under solar illumination. Advanced Materials (Deerfield Beach, Fla.), 2010, 22(12): 1398–1402
CrossRef Pubmed Google scholar
[36]
Tang J, Brzozowski L, Barkhouse D A R, Wang X, Debnath R, Wolowiec R, Palmiano E, Levina L, Pattantyus-Abraham A G, Jamakosmanovic D, Sargent E H. Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. ACS Nano, 2010, 4(2): 869–878
CrossRef Pubmed Google scholar
[37]
Luther J M, Gao J, Lloyd M T, Semonin O E, Beard M C, Nozik A J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Advanced Materials (Deerfield Beach, Fla.), 2010, 22(33): 3704–3707
CrossRef Pubmed Google scholar
[38]
Liu Y, Gibbs M, Perkins C L, Tolentino J, Zarghami M H, Bustamante J Jr., Law M. Robust, functional nanocrystal solids by infilling with atomic layer deposition. Nano Letters, 2011, 11(12): 5349–5355
CrossRef Pubmed Google scholar

Acknowledgements

J. Tang acknowledges the guidance and supervision of Prof. Edward H. Sargent during his Ph.D study. It is the experience and knowledge gained in Prof. Sargent’s group that makes this review possible. J. Tang also acknowledges Prof. Guozhen Shen at Wuhan National Laboratory for optoelectronics, Huazhong University of Science and Technology, for his help and support during the manuscript preparation.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(673 KB)

Accesses

Citations

Detail

Sections
Recommended

/