Temperature effects on output characteristics of quantum dot white light emitting diode

Amin RANJBARAN

PDF(446 KB)
PDF(446 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (3) : 284-291. DOI: 10.1007/s12200-012-0275-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Temperature effects on output characteristics of quantum dot white light emitting diode

Author information +
History +

Abstract

In this paper, we proposed quantum dot (QD) based structure for implementation of white light emitting diode (WLED) based on InGaN/GaN. The proposed structure included three layers of InGaN QD with box shapes and GaN barriers. By using of single band effective mass method and considering strain effect, piezoelectric and spontaneous polarizations internal fields, then solving Schrödinger and Poisson equations self consistently, we obtained electron and hole eigen energies and wave functions. By evaluating dipole moment matrix elements for interband transitions, the output intensity was calculated due to the interband transition between two energy levels with highest emission probability. We adjusted QDs dimensions and material compositions so that the output light can be close to the ideal white light in chromaticity diagrams. Finally, effects of temperature variations on output spectrum and chromaticity coordinates were studied. We demonstrated that temperature variations in the range of 100 to 400 K decrease output intensity, broaden output spectral profile and cause a red shift in three main colors spectrums. This temperature variation deviates (x, y) are coordinated in the chromaticity diagram, but the output color still remains close to white.

Keywords

quantum dot (QD) / InGaN / optical intensity spectrum / white light emitting diode (WLED) / chromaticity coordinate

Cite this article

Download citation ▾
Amin RANJBARAN. Temperature effects on output characteristics of quantum dot white light emitting diode. Front Optoelec, 2012, 5(3): 284‒291 https://doi.org/10.1007/s12200-012-0275-9

References

[1]
Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AIGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters, 1994, 64(13): 1687-1689
CrossRef Google scholar
[2]
Nakamura S. Zn-doped InGaN growth and InGaN/A1GaN double-heterostructure blue-light-emitting diodes. Journal of Crystal Growth, 1994, 145(1-4): 911-917
CrossRef Google scholar
[3]
Vurgaftmana I,Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics, 2001, 89(11): 5815-5875
CrossRef Google scholar
[4]
Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E,Lu H, Schaff W J. Small band gap bowing in In1-xGaxN alloys. Applied Physics Letters, 2002, 80(25): 4741-4743
CrossRef Google scholar
[5]
Piprek J. Nitride Semiconductor Devices: Principles and Simulation. NewYork: WILEY-VCH, 2007
[6]
Allen S C, Steck A J. A nearly ideal phosphor-converted white light-emitting diode. Applied Physics Letters, 2008, 92(14): 143309-143311
CrossRef Google scholar
[7]
Xie R J, Hirosaki N, Kimura N, Sakuma K, Mitomo M. 2-phosphorconverted white light-emitting diodes using oxynitride/nitride phosphors. Applied Physics Letters, 2007, 90(19): 191101-191103
CrossRef Google scholar
[8]
Khoshnegar M, Sodagar M, Eftekharian A, Khorasani S. Design of a GaN white light-emitting diode through envelope function analysis. IEEE Journal of Quantum Electronics, 2010, 46(2): 228-237
CrossRef Google scholar
[9]
Anikeeva P O, Halpert J E, Bawendi M G, Bulović V. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Letters, 2007, 7(8): 2196-2200
CrossRef Pubmed Google scholar
[10]
Schubert E F, Kim J K. Solid-state light sources getting smart. Science, 2005, 308(5726): 1274-1278
CrossRef Pubmed Google scholar
[11]
Chen C H, Su Y K, Sheu J K, Chen J F, Kuo C H, Lin Y C. Nitride-based cascade near white light-emitting diodes. IEEE Photonics Technology Letters, 2002, 14(7): 908-910
CrossRef Google scholar
[12]
Ozden I, Makarona E, Nurmikko A V, Takeuchi T, Krames M. A dual-wavelength indium gallium nitride quantum well light emitting diode. Applied Physics Letters, 2001, 79(16): 2532-2534
CrossRef Google scholar
[13]
Park K, Kwon M K, Cho C Y, Lim J H, Park S J. Phosphor-free white light-emitting diode with laterally distributed multiple quantum wells. Applied Physics Letters, 2008, 92(9): 091110-091112
CrossRef Google scholar
[14]
Shei S C, Sheu J K, Tsai C M, Lai W C, Lee M L, KuoC H. Emission mechanism of mixed-color InGaN/GaN multi-quantum-well light-emitting diodes. Japanese Journal of Applied Physics, 2006, 45(4): 2463-2466
[15]
Rostami A, Rasooli Saghai H, Baghban Asghari Nejad H. A proposal for enhancement of optical nonlinearity in GaN/AlGaN centered defect quantum box (CDQB) nanocrystal. Solid-State Electronics, 2008, 52(7): 1075-1108
CrossRef Google scholar
[16]
Lai C Y, Hsu T M. Polarization field effect on group III-nitride semiconductors. Dissertation for the Doctoral Degree. Taiwan, Republic of China, 2003
[17]
Winkelnkemper M, Schliwa A, Bimberg D. Interrelation of structural and electronic properties in InxGa1-xN/GaN quantum dots using an eight-band k·p model. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(15): 155322-155333
CrossRef Google scholar
[18]
Wu Y R, Lin Y Y, Huang H H, Singh J. Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting. Applied Physics (Berlin), 2009, 105: 13117-13123
[19]
Ranjan V, Allan G, Priester C, Delerue C. Self-consistent calculations of the optical properties of GaN quantum dots. Physical Review B: Condensed Matter and Materials Physics, 2003, 68(11): 115305-115311
CrossRef Google scholar
[20]
Sakamoto A, Sugawara M. Theoretical calculation of lasing spectra of quantum-dot lasers: effect of homogeneous broadening of optical gain. IEEE Photonics Technology Letters, 2000, 12(2): 107-109
CrossRef Google scholar
[21]
Sugawara M. Self-Assembled InGaAs/GaAs Quantum Dots. London: Academic press, 1999
[22]
Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE Journal of Quantum Electronics, 1986, QE-22(9): 1915-1921
CrossRef Google scholar
[23]
Fairman H S, Brill M H, Hemmendinger H. How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research and Application, 1998, 22(1): 11-23
CrossRef Google scholar
[24]
Han D S, Asryan L V. Output power of a double tunneling-injection quantum dot laser. Nanotechnology, 2010, 21(1): 15201-15214
CrossRef Google scholar
[25]
Schubert E F,Gessmann T, Kim J K. Light-Emitting Diodes. Cambridge: Cambridge University Press, 2003

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(446 KB)

Accesses

Citations

Detail

Sections
Recommended

/