Polarization properties in helical metamaterials

Zhenyu YANG, Peng ZHANG, Peiyuan XIE, Lin WU, Zeqin LU, Ming ZHAO

PDF(843 KB)
PDF(843 KB)
Front. Optoelectron. ›› 2012, Vol. 5 ›› Issue (3) : 248-255. DOI: 10.1007/s12200-012-0267-9
REVIEW ARTICLE
REVIEW ARTICLE

Polarization properties in helical metamaterials

Author information +
History +

Abstract

In the last few years, there has been growing interest in the research of helical metamaterials due to the advantages of giant circular dichroism, broad operation bands, and compact structures. However, most of the researches were in the cases of single-, circular-helical metamaterials, and normal incidences. In this paper, we reviewed recent simulation works in the helical metamaterials with the finite-difference time-domain (FDTD) method, which mainly included the optical performances of double-, three-, four-helical metamaterials, performances of elliptical-helical metamaterials, and the polarization properties under the condition of oblique incidences. The results demonstrate that the double-helical metamaterials have operation bands more than 50%, which is broader than those of the single-helical structures. But both of them have low signal-to-noise ratios about 10 dB. The three- and four-helical metamaterials have significant improvement in overall performance. For elliptical-helixes, simulation results suggest that the transmitted light can have elliptical polarization states. On the condition of oblique incidences, the novel property of tunable polarization states occurred in the helical metamaterials, which could have much broader potential applications such as tunable optical polarizers, tunable beam splitters, and tunable optical attenuators.

Keywords

finite-difference time-domain (FDTD) method / polarization / chiral media / helical metamaterials

Cite this article

Download citation ▾
Zhenyu YANG, Peng ZHANG, Peiyuan XIE, Lin WU, Zeqin LU, Ming ZHAO. Polarization properties in helical metamaterials. Front Optoelec, 2012, 5(3): 248‒255 https://doi.org/10.1007/s12200-012-0267-9

References

[1]
Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966-3969
CrossRef Pubmed Google scholar
[2]
Alù A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(1 Pt 2): 016623
CrossRef Pubmed Google scholar
[3]
Leonhardt U. Optical conformal mapping. Science, 2006, 312(5781): 1777-1780
CrossRef Pubmed Google scholar
[4]
Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780-1782
CrossRef Pubmed Google scholar
[5]
Monat C, Grillet C, Corcoran B, Moss D J, Eggleton B J, White T P, Krauss T F. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. Optics Express, 2010, 18(7): 6831-6840
CrossRef Pubmed Google scholar
[6]
Alu A, Engheta N. Guided modes in a waveguide filled with a pair of singlenegative (SNG) double-negative (DNG), and/or double-positive (DPS) layers. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 199-210
CrossRef Google scholar
[7]
Ma Y, Li X, Yu H, Tong L, Gu Y, Gong Q. Direct measurement of propagation losses in silver nanowires. Optics Letters, 2010, 35(8): 1160-1162
CrossRef Pubmed Google scholar
[8]
Wang P, Gu F, Zhang L, Tong L. Polymer microfiber rings for high-sensitivity optical humidity sensing. Applied Optics, 2011, 50(31): G7-G10
CrossRef Pubmed Google scholar
[9]
Meng C, Xiao Y, Wang P, Zhang L, Liu Y, Tong L. Quantum-dot-doped polymer nanofibers for optical sensing. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(33): 3770-3774
Pubmed
[10]
Wu D K C, Kuhlmey B T, Eggleton B J. Ultrasensitive photonic crystal fiber refractive index sensor. Optics Letters, 2009, 34(3): 322-324
CrossRef Pubmed Google scholar
[11]
Wiltshire M C K, Pendry J B, Young I R, Larkman D J, Gilderdale D J, Hajnal J V. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science, 2001, 291(5505): 849-851
CrossRef Pubmed Google scholar
[12]
Wang X, Venugopal G, Zeng J, Chen Y, Lee D H, Litchinitser N M, Cartwright A N. Optical fiber metamagnetics. Optics Express, 2011, 19(21): 19813-19821
CrossRef Pubmed Google scholar
[13]
Liu H, Cao J X,.Zhu N, Liu N, Ameling R, Giessen H. Lagrange model for the chiral optical properties of stereometamaterials. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(24): 241403
[14]
Li T Q, Liu H, Li T, Wang S M, Wang F M, Wu R X, Chen P, Zhu S N, Zhang X. Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial. Applied Physics Letters, 2008, 92(13): 131111
[15]
Liu N, Liu H, Zhu S N, Giessen H. Stereometamaterials. Nature Photonics, 2009, 3: 157-162
[16]
Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X. Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(7): 073101
[17]
Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325(5947): 1513-1515
CrossRef Pubmed Google scholar
[18]
Gansel J K, Wegener M, Burger S, Linden S. Gold helix photonic metamaterials: a numerical parameter study. Optics Express, 2010, 18(2): 1059-1069
CrossRef Pubmed Google scholar
[19]
Gansel J K, Latzel M, Frölich A, Kaschke J, Thiel M, Wegener M. Tapered gold-helix metamaterials as improved circular polarizers. Applied Physics Letters, 2012, 100(10): 101109
[20]
Wu C, Li H Q, Wei Z Y, Yu X T, Chan C T. Theory and experimental realization of negative refraction in a metallic helix array. Physical Review Letters, 2010, 105(24): 247401
[21]
Wu C, Li H Q, Yu X, Li F, Chen H. Metallic helix array as a broadband wave plate. Physical Review Letters, 2011, 107(17): 177401
[22]
Lub J, van de Witte P, Doornkamp C, Vogels J P A, Wegh R T. Stable photopatterned cholesteric layers made by photoisomerization and subsequent photopolymerization for use as color filters in liquid-crystal displays. Advanced Materials (Deerfield Beach, Fla.), 2003, 15(17): 1420-1425
CrossRef Google scholar
[23]
De Filpo G, Nicoletta F P, Chidichimo G. Cholesteric emulsions for colored displays. Advanced Materials (Deerfield Beach, Fla.), 2005, 17(9): 1150-1152
CrossRef Google scholar
[24]
Yoshioka T, Ogata T, Nonaka T, Moritsugu M, Kim S N, Kurihara S. Reversible-photon-mode full-color display by means of photochemical modulation of a helically cholesteric structure. Advanced Materials (Deerfield Beach, Fla.), 2005, 17(10): 1226-1229
CrossRef Google scholar
[25]
Loksztejn A, Dzwolak W. Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy. Journal of Molecular Biology, 2010, 395(3): 643-655
CrossRef Pubmed Google scholar
[26]
Claborn K, Puklin-Faucher E, Kurimoto M, Kaminsky W, Kahr B. Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone. Journal of the American Chemical Society, 2003, 125(48): 14825-14831
CrossRef Pubmed Google scholar
[27]
Hecht E. Optics. 4th ed. San Francisco: Addison-Wesley, 2002, 357-358
[28]
Hikmet R A M, Kemperman H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature, 1998, 392(6675): 476-479
CrossRef Google scholar
[29]
Mitov M, Dessaud N. Going beyond the reflectance limit of cholesteric liquid crystals. Nature Materials, 2006, 5(5): 361-364
CrossRef Pubmed Google scholar
[30]
Xiao J M, Cao H, He W L, Ma Z, Geng J, Wang L, Wang G, Yang H. Wide-band reflective polarizers from cholesteric liquid crystals with stable optical properties. Journal of Applied Polymer Science, 2007, 105(5): 2973-2977
CrossRef Google scholar
[31]
Ha N Y, Ohtsuka Y, Jeong S M, Nishimura S, Suzaki G, Takanishi Y, Ishikawa K, Takezoe H. Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals. Nature Materials, 2008, 7(1): 43-47
CrossRef Pubmed Google scholar
[32]
Yang Z Y, Zhao M, Lu Y F. Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials. Journal of Lightwave Technology, 2010, 28(21): 3055-3061
[33]
Yang Z Y, Zhao M, Lu P X, Lu Y F. Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures. Optics Letters, 2010, 35(15): 2588-2590
CrossRef Pubmed Google scholar
[34]
Yang Z Y, Zhao M, Lu P X. How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials? Optics Express, 2011, 19(5): 4255-4260
CrossRef Pubmed Google scholar
[35]
Wu L, Yang Z, Zhao M, Yu Y, Li S, Zhang Q, Yuan X. Polarization characteristics of the metallic structure with elliptically helical metamaterials. Optics Express, 2011, 19(18): 17539-17545
CrossRef Pubmed Google scholar
[36]
Wu L, Yang Z, Zhao M, Zhang P, Lu Z, Yu Y, Li S, Yuan X. What makes single-helical metamaterials generate “pure” circularly polarized light? Optics Express, 2012, 20(2): 1552-1560
CrossRef Pubmed Google scholar
[37]
Berenger J P. A perfectly matched layer for the absorption of electromagnetic-waves. Journal of Computational Physics, 1994, 114(2): 185-200
CrossRef Google scholar
[38]
Harms P, Mittra R, Ko W. Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures. IEEE Transactions on Antennas and Propagation, 1994, 42(9): 1317-1324
CrossRef Google scholar
[39]
Rakic A D, Djurisic A B, Elazar J M, Majewski M L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied Optics, 1998, 37(22): 5271-5283
CrossRef Pubmed Google scholar
[40]
Liu H, Liu Y M, Li T, Wang S M, Zhu S N, Zhang X. Coupled magnetic plasmons in metamaterials. Physica Status Solidi B, 2009, 246(7): 1397-1406
[41]
Liu H, Li T, Wang S M, Zhu S N. Hybridization effect in coupled metamaterials. Frontiers of Physics in China, 2010, 5(3): 277-290
[42]
Rukhlenko I D, Dissanayake C, Premaratne M. Visualization of electromagnetic-wave polarization evolution using the Poincaré sphere. Optics Letters, 2010, 35(13): 2221-2223
CrossRef Pubmed Google scholar

Acknowledgements

We acknowledge support by the Natural Natural Science Foundation of China (NSFC) (Grant Nos. 11104094, and 61007019), the Fundamental Research Funds for the Central Universities (HUST, Nos. 2010MS063 and 2011TS060), and the Fok Ying Tung Education Foundation (No. 132034).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(843 KB)

Accesses

Citations

Detail

Sections
Recommended

/