An AWG based colorless WDM-PON with RZ-DPSK modulated downstream and re-modulation of DL signal for OOK upstream
Abdul LATIF, Xiangjun XIN, Aftab HUSSAIN, Liu BO, Yousaf KHAN, Ashiq HUSSAIN, Abid MUNIR
An AWG based colorless WDM-PON with RZ-DPSK modulated downstream and re-modulation of DL signal for OOK upstream
We proposed an arrayed waveguide granting (AWG) based 10 Gbps full duplex wavelength division multiplexing passive optical network (WDM-PON) utilizing a return-to-zero differential phase shift keying (RZ-DPSK) modulation technique for down-link direction and then re-modulation of the downlink (DL) signal for the uplink (UL) direction using intensity modulation technique (OOK) with a data rate of 10 Gbps per channel. A successful cost effective colorless WDM-PON full duplex transmission operation for a data rate of 10 Gbps per channel, with a channel spacing of 60 GHz over a distance of 25 km without any optical amplification and dispersion compensation is achieved within low power penalty.
wavelength division multiplexing passive optical network (WDM-PON) / arrayed waveguide grating (AWG) / centralized light source / differential phase shift keying (DPSK) / re-modulation
[1] |
TU report. Trends in Telecommunication reform 2010/11-Enabling tomorrow’s Digital World. 2011
|
[2] |
Chanclou P, Gosselin S, Palacios J F, Alvarez V L, Zouganeli E. Overview of the optical broadband access evolution: a joint article by operators in the IST network of excellence e-Photon/One. IEEE Communications Magazine, 2006, 44(8): 29-35
CrossRef
Google scholar
|
[3] |
Chang G K, Chowdhury A, Jia Z S, Chien H C, Huang M F, Yu J J, Ellinas G. Key technologies of WDM-PON for future converged optical broadband access networks. IEEE/OSA Journal of Optical Communications and Networking, 2009, 1(4): C35-C50
|
[4] |
Langer K D, Vathke J, Habel K, Arellano C. Recent developments in WDM-PON technology. ICTON’2006, 2006, 1: 12-13
|
[5] |
Maher R, Barry L P, Anandarajah P M. Cost efficient directly modulated DPSK downstream transmitter and colourless upstream remodulation for full-duplex WDM-PONs. In: 2010 Conference on OFC/NFOEC. 2010,1-3
|
[6] |
Yeh C H, Chien H C, Chi S. Cost-effective colorless RSOA-based WDM-PON with 2.5 Gbit/s uplink signal. In: 2008 Conference on OFC/NFOEC. 2008, 1-3
|
[7] |
Zhang F, Zhong W D, Xu Z W, Cheng T H, Michi C, Andonovic I. A broadcast/multicast-capable carrier-reuse WDM-PON. Journal of Lightwave Technology, 2011, 29(15): 2276-2284
|
[8] |
Park S J, Lee C H, Jeong K T, Park H J, Ahn J G, Song K H. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. Journal of Lightwave Technology, 2004, 22(11): 2582-2591
CrossRef
Google scholar
|
[9] |
Ponzini F, Cavaliere F, Berrettini G, Presi M, Ciaramella E, Calabretta N, Bogoni A. Evolution Scenario Toward WDM-PON. IEEE/OSA Journal of Optical Communications and Networking, 2009, 1(4): C25-C34
CrossRef
Google scholar
|
[10] |
Calabretta N, Presi M, Proietti R, Contestabile G, Ciaramella E. A bidirectional WDM/TDM-PON using DPSK downstream signals and a narrowband AWG. IEEE Photonics Technology Letters, 2007, 19(16): 1227-1229
CrossRef
Google scholar
|
[11] |
Ji H C, Yamashita I, Kitayama K I. Cost-effective WDM-PON delivering up/downstream data and broadcast services on a single wavelength using mutually injected FPLDs. In: 2008 Conference on OFC/NFOEC. 2008, 1-3
|
[12] |
Kazovsky L G, Shaw W T, Gutierrez D, Cheng N, Wong S W. Next-generation optical access networks. Journal of Lightwave Technology, 2007, 25(11): 3428-3442
CrossRef
Google scholar
|
[13] |
Ratnam J, Chakrabarti S, Datta D. Impact of transmission impairments on demultiplexed channels in WDMPONs employing AWG-based remote nodes. IEEE/OSA Journal of Optical Communications and Networking, 2010, 2(10): 848-858
CrossRef
Google scholar
|
[14] |
Banerjee A, Park Y, Clarke F, Song H, Yang S, Kramer G, Kim K, Mukherjee B. Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review. Journal of Optical Networking, 2005, 4(11): 737-758
CrossRef
Google scholar
|
[15] |
Park S J, Lee C H, Jeong K T, Park H J, Ahn J G, Song K H. Fiber-to-the-home services based on wavelengthdivision-multiplexing passive optical network. Journal of Lightwave Technology, 2004, 22(11): 2582-2590
CrossRef
Google scholar
|
[16] |
Koteles E S. Integrated planar waveguide demultiplexers for high density WDM applications. Fiber and Integrated Optics, 1999, 18(4): 211-244
CrossRef
Google scholar
|
[17] |
Saito T, Ota T, Toratani T, Ono Y. 16-ch arrayed waveguide grating module with 100-GHz spacing. Fukawa review, 2000, 19(9): 47-52
|
[18] |
Takahashi H, Oda K, Toba H, Inoue Y. Transmission characteristics of arrayed waveguideN × N wavelength multiplexer. Journal of Lightwave Technology, 1995, 13(3): 447-455
|
[19] |
Achyut K D, Niloy K D, Masahiko Fujiwara. WDM Technologies: Passive Optical Components. San Diego, CA: Elsevier, 2002
|
[20] |
Kaminow I P, Li T Y, Willner A E. Optical Fiber Telecommunications Volume-A: Components and Subsystems. 5th ed. London: Academic Press Elsevier Inc., 2008
|
[21] |
Han K E, Yang W H, Yoo K M, Kim Y C. Design of AWG based WDM-PON architecture with multicast capability. In: 2008 IEEE INFOCOM Workshops. 2008, 1 -6
|
[22] |
Smit M K. New focusing and dispersive planar component based on an optical phased array. Electronics Letters, 1988, 24(7): 385-386
CrossRef
Google scholar
|
/
〈 | 〉 |